APPLICATION NOTE SOFTWARE

UAC 357xB Programmer's Guide

Contents

Page	Section	Title
4	1.	Introduction
5	2.	V8 Firmware Source Files
7	3.	Bootloader Concept
7	3.1.	External EEPROM
7	3.1.1.	Introduction
7	3.1.2.	EEPROM Types
8	3.1.3.	EEPROM bootstrap options
9	3.1.4.	EEPROM content
9	3.1.4.1.	Header
10	3.1.5.	EEPROM Configuration Section
10	3.1.5.1.	I/O and HID
16	3.1.5.2.	The Section1 Concept – data_sec1.asm
17	3.1.6.	External EEPROM
18	3.1.6.1.	Content of the external EEPROM
19	3.1.7.	The Plug-in Concept
20	4.	USB Descriptor
20	4.1.	USB_DESCRIPTOR.ASM
20	4.1.1.	Device Descriptor (Chapter 9.6.1)
20	4.1.2.	Configuration Descriptor (Chapter 9.6.2)
20	4.1.3.	Interface Descriptors (Chapter 9.6.3)
23	5.	Handling of Class Specific Requests
23	5.1.	Introduction
23	5.2.	Audio-Control Handling
25	5.2.1.	GET-Requests and SET-Requests.
29	5.2.2.	Examples
29	5.2.2.1.	How to add new Features and Requests
33	5.3.	DSP Control
35	5.4.	Sample Rate Control
38	6.	GPIO Handling
40	6.1.	Memory Mapped Mode
40	6.2.	Debouncing
41	6.3.	Reporting the Keycode
41	6.4.	Toggle Keys
42	6.5.	GPIO port configurations.
43	6.6.	The parallel interface mechanism (RD/STRB)
44	7.	Alternate Downstream ISO Endpoint
44	7.1.	How to use the alternative downstream ISO-Endpoint

Contents, continued

Page	Section	Title
45	8.	Appendex 1: SDK
46	9.	Appendix 2: DSP Firmware
46	9.1.	Overview
47	9.2.	User Registers
57	10.	Appendix 3: V8 Controller Registers
57	10.1.	Overview
58	10.2.	V8 Memory Layout
59	10.3.	V8 Peripherals & Control & Status Registers
59	10.3.1.	V8 General & Interface Registers
64	10.4.	USB Serial Engine Interface
66	10.5.	General Purpose IO Registers / Test Bus IF
67	10.6.	Application specific registers
73	10.7.	DSP EMU-control registers
75	11.	Glossary
76	12.	Application Note History

Programmer's Guide

1. Introduction

The basic information on functionality and electrical characteristics is given in the data sheet UAC 357xB. This is based on the Micronas standard firmware or SDK firmware, which is a good example for a feature set needed in a general purpose USB audio codec.

The flexibility of the device, however, allows customization to match a specific application exactly. This is achieved by the use of a programmable internal microcontroller and supply of a software development kit (SDK).

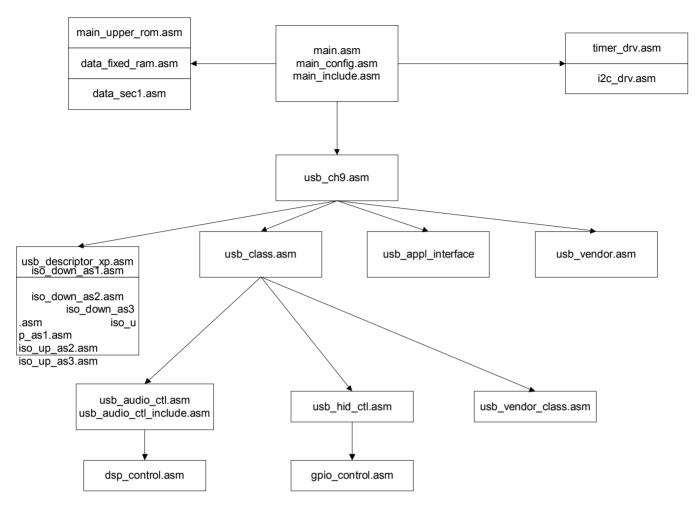
The purpose of this paper is to provide all information which is needed to customize the UAC357xy firmware.

Beginning with general information on the SDK environment and usage, an explanation of the standard firmware structure is given. This is followed by the detailed description of all functions which may be modified on customization, like default values, descriptors and all audio class related items. This tutorial is completed with register lists for both V8-microcontroller and DSP.

Information on the USB chapter 9 handling is not given because this routines are strictly tied to the hardware of the chip and it is not recommended to modify this blocks. It is also not possible to modify the DSP firmware.

2. V8 Firmware Source Files

The Micronas-Standard-Firmware package consists of the following files:


Table 2–1: Source Files

File Name	Description		
data_fixed_ram.asm	RAM variables with fixed address		
data_sec1.asm	Section1 variables		
dsp_control.asm	controls the audio func- tions in the DSP		
emu_flash.asm	structure for the I2C- EEPROM		
gpio_control.asm	GPIO communicaton and the HID		
i2c_drv.asm	I2C driver		
iso_down_as1.asm	alternate setting 1 for downstream		
iso_down_as2.asm	alternate setting 2 for downstream		
iso_down_as3.asm	alternate setting 3 for downstream		
iso_up_as1.asm	alternate setting 1 for upstream		
iso_up_as2.asm	alternate setting 2 for upstream		
iso_up_as3.asm	alternate setting 3 for upstream		
macros.asm v8 macros			
main.asm	main program – includes all other .asm`s		
main_config.asm	memory map of the V8 address space		
main_include.asm	wakeup routines, initialisa- tions		
main_upper_rom.asm	content of upper rom space		
timer_drv.asm	Timer driver		
usb_appl_interface.asm	application specific chap- ter 9 stuff		
usb_audio_ctl.asm	handles audio class requests		

Table 2–1: Source Files

File Name	Description
usb_audio_ctl_include.as m	routines and tables for audio class requests
usb_ch9.asm	application independant chapter 9 handling
usb_class.asm	branch handler to class spec. requests
usb_descriptor_xp.asm	Standard Descriptor ("WINXP-proved")
usb_hid_ctl.asm	empty – handles hid class requests
usb_vend_class.asm	empty – handles vendor class requests
usb_vendor.asm	handles vendor spec chap- ter 9 requests

The following diagram displays how all these files are related to each other:

Fig. 2–1: Firmware overview

3. Bootloader Concept

-> von W. Platzer bis KW 25

3.1. External EEPROM

3.1.1. Introduction

The UAC 357xB can load its configuration and plug-ins out of an external I^2C EEPROM.

3.1.2. EEPROM Types

The UAC 357xB can have different EEPROMS connected to the I²C bus. The UAC 357xB is working as an I²C bus master at this point in time. Depending on EEPROM size the EEPROM can hold different content (see Table 3–1)

Table 3–1: Supported I²C EEPROM types

EEPROM size	Purpose
2kbit	Configuration only
4-32kbit	Configuration Plug-in software
64kbit	Configuration On reset loadable firmware
128kbit	Configuration On reset loadable firmware Plug-in software

3.1.3. EEPROM bootstrap options

The EEPROM configuration can be set with bootstrap options at the pins USBDAT, USBCLK and USBWSO (see Table 3–2).

Table 3–2:

USBWSO	USBDAT	USBCLK	Address Subaddress	Purpose
1	1	don't care		internal ROM only I ² C master disabled
1	0	don't care	0x50 1byte subaddressing	Configuration data Plug-in Software 100kHz I ² C master
0	1	0	0x51 2byte subaddressing	Configuration data On reset loadable firmware Plug-in software 400kHz I ² C
0	1	1	0x52 2byte subaddressing	Configuration data On reset loadable firmware Plug-in software 400kHz I ² C
0	0	0	0x51 2byte subaddressing	Configuration data On reset loadable firmware Plug-in software 100kHz I ² C
0	0	1	0x52 2byte subaddressing	Configuration data On reset loadable firmware Plug-in software 100kHz I ² C

3.1.4. EEPROM content

3.1.4.1. Header

The first byte in the serial EEPROM describes the EEPROM content (see Table 3–3).

 Table 3–3: EEPROM configuration byte

bit function	
bit[7]	verify checksum
bit[36]	must be set to 0x00
bit[2] new firmware	
bit[1]	plug-in
bit[0]	UAC357xB configuration

This allows to have 3 different sections in the EEPROM. The address and length of all this sections are stored in the following locations in the EEPROM.

3.1.5. EEPROM Configuration Section

Address	Function
0x0000	EEPROM configuration
0x0001 / 0x0002	Configuration section length High Byte / Low Byte
0x0003 / 0x0004	Configuration section address High Byte / Low Byte
0x0005 / 0x0006	Plug-in section length High Byte / Low Byte
0x0007 / 0x0008	Plug-in section address High Byte / Low Byte
0x0009 / 0x000A	Firmware section length High Byte / Low Byte
0x000B / 0x000C	Firmware section address High Byte / Low Byte

3.1.5.1. I/O and HID

Address	Function	Name
0x00	MIN_PB_VOLUME	MIN_PB_VOLUME
	bit [70] volume of the DAC output after configuration: 0x00 0dB 0xEC -20dB	
	gets overwritten by Set_Volume requests later on	
0x01	reserved 2	Reserved_2
	bit [70] reserved must be set to 0x00	
0x02	V8_CTL_DEFAULT	V8_CTL_DEFAULT
	bit [7]set to 0 for GPIO[11] standard output set to 1 for GPIO[11] enable PWM output	
	bit [60] reserved must be set to 0x08	
0x03	reserved 3	Reserved_3
	bit [70] reserved must be set to 0x01	
0x04	reserved 4	Reserved_4
	bit [70] reserved must be set to 0x09	

Address	Function		Name
0x05	reserved 5		Reserved_5
	bit [70]	reserved must be set to 0x05	
0x06	reserved 6		Reserved_6
	bit [70]	reserved must be set to 0x0b	
0x07	reserved 7		Reserved 7
	bit [70]	reserved must be set to 0x04	_
0x08	Miscellaneo	us configuration 1	Config_Misc_1
	bit [7]	0: μC uses USBWSO, USBDAT, USBCLK interface 1: DSP I ² S out uses USBWSO, USBDAT, USBCLK interface	<u> </u>
	bit [62]	reserved must be set to MSB 01000 LSB	
	bit [10]	selects audio oversampling clock frequency pin MCLK 00: 36.8MHz 01: 24.576MHz 10: 18.432MHz 11: do not use	
0x09	Analog Con	trol	ANCTR
	bit[7]	outlron : 0 : disable headphone opamp 1 : enable headphone opamp, force sref to on state (default)	
	bit[6]	srefon : 0 : sref off 1 : sref on (default)	
	bit[5]	filton : 0 : disable filter opamp 1 : enable filter opamp	
	bit[4]	reserved, must be set to zero	
	bit[3]	Internal reset enable	
	bit[2]	Pseudo differential output mode	
	bit[1]	Common output mode	
	bit[0]	setagn : set voltage of sref 0 : 1.725V 1 : 2.3V	
0x0a	GPIO[70]	direction	PIO
	0: input 1: output		
	bit [70]	set GPIO [70] to input/output	
0x0b	GPIO[118]	direction	PIO2
	bit [74]	reserved must be set to MSB 0000 LSB	
	0: input 1: output		
	bit [30]	set GPIO [118] to input/output	

UAC 357xB

Address	Function		Name
0x0c	GPIO[70]	pulldown enable	PDEN
	0: disable pull-down 1: enable pull-down		
	bit [70]	GPIO [70] pull-down resistor enable / disable	
0x0d	GPIO[118	3] pull-down enable	PDEN2
	bit [74]	reserved must be set to MSB 0000 LSB	
	0: disable p 1: enable pu		
	bit [30]	GPIO [118] pull-down resistor enable / disable	
0x0e	GPIO[70]	driver strength	PS
	0: weak 1: strong		
	bit [70]	GPIO [70] driver strength weak / strong	
0x0f	GPIO[118	3] driver strength	PS2
	0: weak 1: strong		
	bit [7]	Pins: DAO, DAI, WSI, CLI driver strength weak / strong	
	bit [6]	Pins: USBWSO, USBCLK, USBDAT driver strength weak / strong	
	bit [5] Pins: strong	SOF, SEN, SUSPENDQ, TRDY driver strength weak /	
	bit [4]	Pins: STRB, RD DRIVER STRENGTH weak / strong	
	bit [30]	GPIO [118] driver strength weak / strong	
0x10	IO Config	1	IO_CONFIG_1
	0 : input / tr 1 : output	istate	
	bit [7]	Direction of pin: STRB	
	bit [6]	Direction of pin: RD	
	bit [5]	Direction of pin: USBDAT	
	bit [4]	Direction of pin: USBCLK	
	bit [3]	reserved set to 0:	
	bit [2]	Direction of pin: CLI	
	bit [1]	Direction of pin: WSI	
	bit [0]	Direction of pin: DAI	

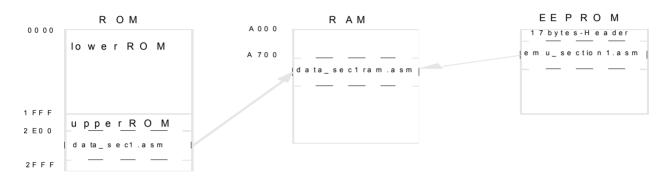
Address	Function	Name
0x11	IO Config 2	IO_CONFIG_2
	0 : input / tristate 1 : output	
	bit [7] Direction of pin: MCLK	
	bit [6] Direction of pin: DAO	
	bit [5] Direction of pin: USBWS	
	bit [4] Direction of pin: SEN	
	0: disable pull-down resistor 1: enable pull-down resistor	
	bit [3] enable pull-down resistor of pin VBUS:	
	0 : input / tristate 1 : output	
	bit [2] Direction of pin: TRDY	
	bit [1] Direction of pin: SOF	
	bit [0] Direction of pin: SUSPENDQ	
0x12	reserved 8	reserved_8
	bit [7:0] reserved set to 0xa7	
0x13	reserved 9	reserved_9
	bit [7:0] reserved set to 0x91	
0x14	Key timer	reserved_8
	Timer value for debouncing of the HID keys	
	bit [7:0] set to a value between 0x01 and 0xff; default 0x7f	
0x15 -	equalizer coefficients	
0x44	coefficients for the 5-band parametric equalizer	
0x45 -	I ² S configuration	i2S_CONFIG
0x47	for a detailed description see register description of the DSP	
0x48 - 0x49	I ² S record selection	i2S_CONFIG
0X49	for a detailed description see register description of the DSP	
0x4A - 0x50	Bass Boost On Setting Micronas Bass settings for Bass Boost On	BassBoostOn
	for a detailed description see Micronas Bass for UAC357xB Application note	
0x51 - 0x57	Bass Boost Off Setting Micronas Bass settings for Bass Boost On	BassBoostOff
	for a detailed description see Micronas Bass for UAC357xB Application note	
0x58	AGC decay	AgcDecay
	sets the AGC decay time for the DAC path. For more information see the the regis- ter description of the DSP	
0x59	DSP mode selection	DspMode
	selects the required mode for the DSP. Full feature mode(72MHz) or reduced feature mode(48Mhz).	
	0: Full feature mode(72MHz) 1: Reduced feature mode(48MHz	

UAC 357xB

Address	Function	Name
0x5a	DAC on/off	AgcDecay
	Turns the required bit [7:2]reserved should be set to 0	
	bit [1] reserved	
	bit [0] 0: Stereo DAC Off 1: Stereo DAC On	
0x5b	reserved 10	reserved_10
	reserved set to 0x00	
0x5c -	Vendor ID	VendorId
0x5d	the USB vendor ID. e.g. Micronas has 0x074d	
	byte order low-byte / high-byte	
0x5e -	Product ID	ProductId
0x5f	the USB product ID. e.g. UAC3576B has 0x3576	
	byte order low-byte / high-byte	
0x60 -	Device release code	bcdDevice
0x61	BCD number!! : use only binary coded decimals here. Using hex numbers will confuse hosts.	
	order low-byte / high-byte	
0x62	iManufacture	iManufacture
	index number of the manufacture string in the EEPROM. valid numbers 03	
	0: no string in the table	
	1,2,3: string number in the table	
0x63	iProduct	iProduct
	index number of the product string in the EEPROM. valid numbers 03	
	0: no string in the table	
	1,2,3: string number in the table	
0x64	iSerialNumber	iserial number
	index number of the serial number string in the EEPROM. valid numbers 03	
	0: no string in the table	
	1,2,3: string number in the table	
0x65	iConfig	iConfig
	index number of the configuration string in the EEPROM. valid numbers 03	
	0: no string in the table	
	1,2,3: string number in the table	
0x66	bmAttributes	bmAttributes
	reserved set to 0x00	
0x67	Max power	MaxPower
	reserved set to 0x00	
0x68	Interval	bInterval
	reserved set to 0x00	

Address	Function	Name
0x69 -	Pointer string 0	pString0
0x6a	value: 0xa771	
0x6b -	Pointer string 1	pString1
0x6c	value: 0xa775	
0x6d -	Pointer string 2	pString2
0x6e	value: pString1 + *pString1	
0x6f -	Pointer string 3	pString3
0x70	value: pString1 + *pString1 + *pString2	
0x71 -	String 0	String0
0x74	byte 0: 0x04	
	byte 1: 0x03	
	byte 1: 0x09	
	byte 1: 0x04	
0x75 -	Strings 13	String1
0xXX	all strings are currently ASCII. No Unicode support.	String2
	String format:	String3
	byte 0: length of ASCII string + 2	
	byte 1: 0x03	
	byte 2n ASCII string	

3.1.5.2. The Section1 Concept – data_sec1.asm


The Section1 is the first section of an optionally attached external EEPROM and is used to hold all variables and default values that may be different from one application to the other, based on the same internal ROM-firmware. The standard firmware handles 256-bytes Section1 data.

All data are defined in data_sec1.asm. All data names here have the prefix ",SED_DEFAULT_ ",

(originally an sed-script was used to handle this file).

This file is included at the position 0x2E00 of the upper-ROM and is the default Section1 of a ROM firmware. The assembler script generates the file "data_sec1ram.asm" which is an mirror image of the Section1 in the RAM area at 0xA700 by just inserting placeholders using the same names apart from the SED_DEAULT prefix. The scripts also generates the file "emu_section1.asm" which is a hex-representation of the data_sec1.asm. This file is then included in the "emu_flash.asm". This serves as the default Section1 code in the external EEPROM. So without changing ROM firmware the default setting and the descriptor IDs and strings can be modified.

Note: It is not allowed to change the length or the ordering of the Section1 data in the EEPROM. Length and ordering must be identical with that of the upper ROM Section1. Descriptor strings are not affected by the length-restriction as long as the 256-byte limit is not violated.

Fig. 3–1:

Note: The bootloader (see "The Bootloader Concept") loads the data_sec1.asm from the upper ROM into the placeholder-RAM area and overwrites this area with Section1 - data coming from the external EEPROM (if an EEPROM with Section1 data is connected.

The Section1 concept is targeted for a device without shadow RAM. Applications based on devices with Shadow RAM can keep all Section1 data as part of the emulatable lower ROM, of course.

3.1.6. External EEPROM

The UAC 357xB is equipped with it's own ROM including the Micronas firmware necessary for operation.

Optionally, the IC can be operated with the followings oft ware configurations:

- 1. Micronas firmware (internal ROM)
- 2. customer-specific firmware (external EEPROM)
- 3. Micronas firmware plus customer-specific plug-in code
- 4. Structure of the external EEPROM

The bootloader handles an external I^2C -EEPROM with automatic detection of presence and structure and download of code and data from up to four sections.

The header byte tells the bootloader how the EEPROM is structured and the sections are used as follows:

Table 3–5: Header Byte

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1=test checksum	0	0	0	1=Section4	1=Section3	1=Section2	1=Section1

Section1: default data and programmable descriptor components (see The Section1 Concept)

Section2: used for plug-ins; small pieces of code that extend a given ROM firmware

Section3: contains the V8 code for the Shadow RAM

Section4: contains the XDFP code; the bootloader loads it into the external DSP Emu-RAM

3.1.6.1. Content of the external EEPROM

Table 3–6:

Addr.	Content	Byte		
0x00	length in bytes of Section1 + 1 for checksum	High Byte		
0x01	length in bytes of Section1 + 1 for checksum	Low Byte		
0x02	address-offset in bytes of Section1 related to addr 0000	High Byte		
0x03	length in bytes of Section2 + 1 for checksum	High Byte		
0x04	length in bytes of Section2 + 1 for checksum	Low Byte		
0x05	address-offset in bytes of Section2 related to addr 0000	High Byte		
0x06	length in bytes of Section3 + 1 for checksum	High Byte		
0x07	length in bytes of Section3 + 1 for checksum	Low Byte		
0x08	address-offset in bytes of Section3 related to addr 0000	High Byte		
0x09	length in bytes of Section4 + 1 for checksum	High Byte		
0x0A	length in bytes of Section4 + 1 for checksum	Low Byte		
0x0B	address-offset in bytes of Section4 related to addr 0000	High Byte		
0x0C	address-offset in bytes of Section4 related to addr 0000	Low Byte		
0x0D	DATA of Section1 + 1 for checksum	Header Byte		
0x0E				
0xxx	DATA of Section2 + 1 for checksum	Header Byte		
0xxx				
0xxx	DATA of Section3 + 1 for checksum	Header Byte		
0xxx				
0xxx	DATA of Section4 + 1 for checksum	Header Byte		
0xxx				

The checksum is an XOR over all bytes of a section the address-offset of Section1 is 0x11 (17 Bytes Header)

3.1.7. The Plug-in Concept

4. USB Descriptor

4.1. USB_DESCRIPTOR.ASM

This part of the source code covers all information that is reported to the host upon enumeration. The "DESCRIP-TOR" provides a complete description of the USB-characteristic. It is assumed that the reader is familiar with the USB-basics and it is recommended to have the USB-SPEC 1.1 nearby because it is often referred to this paper. The following paragraphs explain the structure of the descriptor and the functionality of the Micronas Standard Descriptor.

The descriptor is split into the following parts:

- Device Descriptor
- Configuration Descriptor
- Interface Descriptors

4.1.1. Device Descriptor (Chapter 9.6.1)

1 here is the place to provide formal information of the device like

- Manufacturer ID
- Product ID
- Release Numbers
- String Information

The Micronas Standard Descriptor keeps this kind of information EEPROM programmable (->FE-concept, ->Section1-concept). This, however, is important only when the device works with ROM-Firmware and taking only few programmable parts out of an external EEPROM.

4.1.2. Configuration Descriptor (Chapter 9.6.2)

Sometimes all but the device descriptor is called Configuration Descriptor but the exact definition is given in chapter 9.6.2 of the spec. The important points here are:

- number of interfaces (Chapter 9.6.3, note: wrong number here crashes all operating systems!)
- Attributes defines self/bus-powered and remote wakeup capability
- Maxpower in mA this must be set in case of bus-powered mode

The attributes and the maxpower are programmable via Section1.

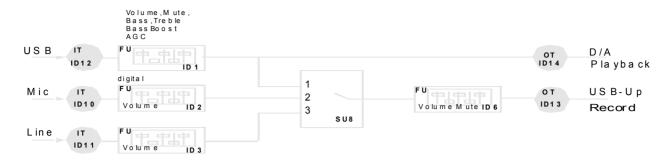
The Micronas Standard Firmware uses the configuration string for a time code information

It is string 3 (index=3), and the V8-assembler directive "...datetime" generates the timing information automatically. This allows an easy check of the FW-version.

4.1.3. Interface Descriptors (Chapter 9.6.3)

All USB-functions require a USB interface. The Standard Descriptor has 4 interfaces. This is coded as follows:

- .equ bNumInterfaces4
- .equ ISO_CONTROL_IFC_NR0
- .equ ISO_DOWN_IFC_NR1
- .equ ISO_UP_IFC_NR2
- .equ HID_IFC_NR3


The **ISO_CONTROL_IFC** is a class specific descriptor and describes the path of the up- and downstream audio signal to and from the DSP. Here we define whether the device is an USB-Speaker, USB-Headset, or a USB soundcard for example. We also define here, how the device appears in the Windows mixer, for example if we have line-input or mic input or both. The rules for defining this structures can be found in the "Universal Serial Bus Device Class Definition for Audio Devices".

Note: The USB-Spec allows free combinations of input units, feature units, selector units, mixer unit, output units etc. A first serious restriction here, however, is the Windows mixer, which must be observed, if the device shall be shipped without additional drivers. The WIN mixer is not flexible and requires a strict scheme of devices working on the recording mixer and devices working on the playback mixer. Also the choice of features is limited here. For example: we don't have mute buttons for the recordings devices, or how shall we switch on and off an AGC for the mic-input? No way.

Apart from that, the WIN-mixer shows different performance in different WIN-versions. The mixer WIN-ME is nearly unusable.

The second restriction is the limited capability of the operating system in parsing this part of the descriptor due to a bad implementation of the USB-Spec. This causes many bluescreens or system hang-ups and requires try & error methods, because nobody can give a reliable answer here on how the descriptor should look like. The Micronas Standard Descriptor was tested on all WIN – operating systems and on MAC 9.1.

The **ISO_CONTROL** interface reflects the following audio path in the Micronas Standard Descriptor.

Its the basic configuration of an USB codec. The additional (and already implemented) asynchronous I2S I/O features are not reflected here.

Other more complex structures are possible, but then the operating system eventually may not handle this and an additional vendor specific driver and mixer tool may be required.

The **ISO_DOWN interface** covers the audio-downstream functionality. This interface has two alternate settings, describing the audio formats, which are supported by the chip. These are:

Alternate Setting 1	16 bit mono		
Alternate Setting 2	16 bit stereo		

The properties of each alternate setting are defined in the

CS-Audio Streaming Interface Format. Here it is declared that the chip handles continuos sampling rates. The range is defined with:

;ISO-SAMPLING RANGE

.equ LOW_SAMPLE_FREQ 6400

.equ HI_SAMPLE_FRE48000

This range is identical for all ISO-interfaces. The upper limit must never be exceeded.

Important also is the packet size which define the maximum bytes per frame. It is recommended to slightly exceed the theoretical value.

Example:16_BIT_STEREO at 48kHz require 48 x 2 x 2 = 192bytes

the value used in the descriptor is 200bytes

The following packet sizes should never be changed.

;PACKET SIZE

.equ 8_BIT_MONO 50 .equ 8_BIT_STEREO100 .equ 16_BIT_MONO100 .equ 16_BIT_STEREO200 .equ 24_BIT_MONO150 .equ 24_BIT_STEREO300

Note: The device is capable of handling 24bit downstream word also. But the standard descriptor does not declare this. The code for this (alternate setting 3), however, is provided.

The downstream uses endpoint 1.

The **ISO_UP interface** covers the audio-upstream functionality. This interface has three alternate settings, describing the audio formats, which are supported by the chip. These are:

Alternate Setting 1	08 bit mono		
Alternate Setting 2	16 bit mono		
Alternate Setting 3	16 bit stereo		

The upstream uses endpoint 4 (coded as 84 - IN endpoint)

The HID interface contains the HID endpoint 3 (coded as 83 – IN endpoint) and the REPORT Descriptor. The Standard Descriptor assigns the following functions to the GPI-Ports:

GPI 0	Volume Up			
GPI 2	Volume Down			
GPI 3	Mute			
GPI 4	Bass Boost			

The key codes for GPIO5..7 are also reported to the host, but no HID-functions are assigned to this pins. This can be used in a vendor specific driver to trigger additional functions.

Important for the HID endpoint are:

- 0x0002;wMaxPacketSize
- .byte0xfe;bInterval

bInterval defines the polling interval in ms. This is a Section 1 variable (->FE-concept, ->Section1-concept).

Note: It is not recommended to change the MaxPacketSize in the HID-endpoint, because this requires deep familiarity with the TX-buffer handling.

More information on the HID handling can be found in the description of gpio_control.asm.

5. Handling of Class Specific Requests

5.1. Introduction

The UACB needs class specific requests to handle the USB audio control. After an incoming request is identified as class specific further processing is done in the USB_CLASS_SETUP routine, located in usb_class.asm.

Here first it is checked if its an audio class request. This happens in USB_AUDIO_CTL_START in the file usb_audio_ctl.asm. If it is not identified here the same is tried with USB_HID_CTL_START and USB_VEND_CLAS_START but only audio-control and sample rate-control is supported in the standard firmware

5.2. Audio-Control Handling (usb_audio_ctl.asm, usb audio ctl include.asm, dsp control.asm)

It is recommended here to be familiar with the Universal Serial Bus Device CLass Definition for Audio Devices Specification, Release 1.0.

The number and kind of control request is strictly related to the **ISO_CONTROL_IFC** descriptor. That means if the descriptor is modified also the request handling needs to be modified (especially if new features are introduced). The standard firmware handles the following audio control requests for feature units (FU), selector units (SU) and mixer units (MU).

- FU1_MUTE_
- FU1_VOL_CH1
- FU1_VOL_CH2
- FU1_BASS
- FU1_TREBLE
- FU1_AGC
- FU1_BASSBOOST
- FU2_MUTE
- FU2_VOL
- FU3_MUTE
- FU3_VOL
- FU6_MUTE
- FU6_VOL
- SU7
- SU8
- MU9_IN1
- MU9_IN2

This was based on a descriptor which covered more functionality than the current descriptor.

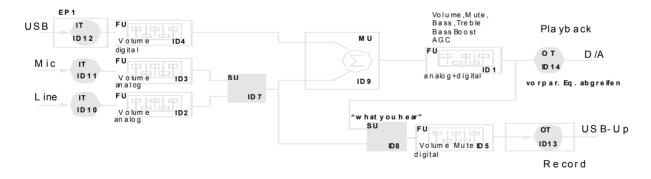
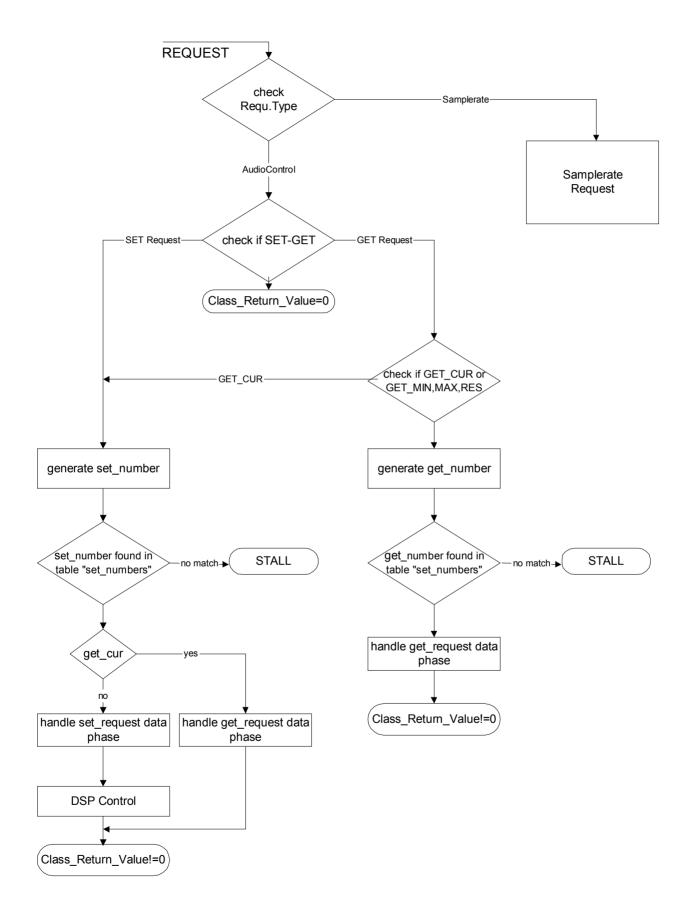



Fig. 5–1:

Note: Even this structure does not represent the complete audio structure of the device. All I2S functionality is not represented here and needs to be added in a future version.

Fig. 5–2: Audio request handling

5.2.1. GET-Requests and SET-Requests.

The GET-requests are needed

1. to report the parameter range (MIN,MAX,RES) of the units to the host.

This information is located in ROM-table ROM_USB_MINMAXRES in usb audio ctl include.asm

ROM_USB_MINMAXRES:

ROM_USB_VOL_MIN_FU1_CH1:	.rword 0xD700
ROM_USB_VOL_MAX_FU1_CH1:	.rword 0x0000
ROM_USB_VOL_RES_FU1_CH1:	.rword 0x0010

etc.

This, for example, tells the host that FU1 has an audio range from -40 dB to 0dB with a stepsize of 1dB.

All parameters here are coded with 2-bytes even if only 1-byte is required. This simplifies programming

2. to report the current status (CUR) of the unit.

This information is located in RAM-table USB_AUDIOCLASS_SET_CUR in usb_audio_ctl_include.asm. The content of this table represents the current status of the audio parameters.

The CUR-parameters are not exactly identical with the values which are transmitted to the DSP.In some cases there must be a transformation first, to match the requirements of the DSP - algorithm. The SET requests are needed:

- 1. to set the CUR-parameters This request modifies the RAM-table USB_AUDIOCLASS_SET_CUR and accordingly triggers the update of the DSP-parameters (dsp_control.asm)
- 2. to set the sampling rate for the ISO upstream (endpoint control operation)

The method used for decoding the request types is table based. The idea behind this is:

The supported requests are represented by a certain number, which is calculated out of the requests components. These "magic numbers" are stored in the ROM-tables "set_numbers" and "get_numbers". Out of any incoming vendor request the same procedure is used to compute this number and then it is checked if this number is found in the set_numbers or get_numbers table. If the number is found, the corresponding table position represents the decoded request. If more requests needs to be decoded than provided in the standard firmware the procedure is needed to compute the "magic numbers". This is done with the help of Table 5–1 an Table 5–2.

Request Nr.	wIndexH	wValueH	wValueL	magic number	Request Name
1	1	1	0	16	FU1_MUTE_CUR
2	1	2	1	288	FU1_VOL_CH1_CUR
3	1	2	2	544	FU1_VOL_CH2_CUR
4	1	3	0	48	FU1_BASS_CUR
5	1	5	0	80	FU1_TREBLE_CUR
6	1	7	0	112	FU1_AGC_CUR
7	1	9	0	144	FU1_BASSBOOST_CUR
8	2	1	0	17	FU2_MUTE_CUR
9	2	2	0	33	FU2_VOL_CUR
10	3	1	0	18	FU3_MUTE_CUR
11	3	2	0	34	FU3_VOL_CUR
12	6	1	0	21	FU6_MUTE_CUR
13	6	2	0	37	FU6_VOL_CUR
14	7	0	0	6	SU7_CUR
15	8	0	0	7	SU8_CUR
16	9	1	1	280	MU9_IN1_CUR
17	9	2	1	296	MU9_IN2_CUR

:

Table 5–2: GET numbers

Request Nr.	wIndexH	wValueH	wValueL	bRequest	magic number	Request Name
1	1	2	1	82	288	USB_VOL_MIN_FU1_CH1
2	1	2	1	83	1312	USB_VOL_MAX_FU1_CH1
3	1	2	1	84	2336	USB_VOL_RES_FU1_CH1
4	1	2	2	82	544	USB_VOL_MIN_FU1_CH2
5	1	2	2	83	1568	USB_VOL_MAX_FU1_CH2
6	1	2	2	84	2592	USB_VOL_RES_FU1_CH2
7	1	3	0	82	48	USB_BASS_MIN_FU1_CH0
8	1	3	0	83	1072	USB_BASS_MAX_FU1_CH0
9	1	3	0	84	2096	USB_BASS_RES_FU1_CH0
10	1	5	0	82	80	USB_TREBLE_MIN_FU1_CH0
11	1	5	0	83	1104	USB_TREBLE_MAX_FU1_CH0
12	1	5	0	84	2128	USB_TREBLE_RES_FU1_CH0
13	2	2	0	82	33	USB_VOL_MIN_FU02_CH0
14	2	2	0	83	1057	USB_VOL_MAX_FU02_CH0
15	2	2	0	84	2081	USB_VOL_RES_FU02_CH0
16	3	2	0	82	34	USB_VOL_MIN_FU03_CH0
17	3	2	0	83	1058	USB_VOL_MAX_FU03_CH0
18	3	2	0	84	2082	USB_VOL_RES_FU03_CH0
19	6	2	0	82	37	USB_VOL_MIN_FU06_CH0
20	6	2	0	83	1061	USB_VOL_MAX_FU06_CH0
21	6	2	0	84	2085	USB_VOL_RES_FU06_CH0
22	7	0	0	82	6	USB_MIN_SU07
23	7	0	0	83	1030	USB_MAX_SU07
24	7	0	0	84	2054	USB_RES_SU07
25	8	0	0	82	7	USB_MIN_SU08
26	8	0	0	83	1031	USB_MAX_SU08
27	8	0	0	84	2055	USB_RES_SU08
28	9	1	1	82	280	USB_MIN_MU09_IN1
29	9	1	1	83	1304	USB_MAX_MU09_IN1
30	9	1	1	84	2328	USB_RES_MU09_IN1
31	9	2	1	82	296	USB_MIN_MU09_IN2
32	9	2	1	83	1320	USB_MAX_MU09_IN2
33	9	2	1	84	2344	USB_RES_MU09_IN2

The set numbers are computed with:

(wIndexH-1) + wValueH*16 + wValueL*256

The get number are computed with

=(\$B23-1)+\$C23*16+(\$E23-82)*16*16*4+\$D23*16*16

wIndexH-1 + wValueH*16 + bRequest*256 + (wValueL-82)*1024

Both set and get numbers are represented with 16bit which is sufficient for this purpose. The other request components are checked by normal "if"-structures.

The flowchart should give a better understandig of this procedure.

- **Note:** The GET_CUR requests also uses the set_number table, because the structure of these request is very similiar to the SET_CUR requests.
- **Note:** The SET_INDEX is used to identify the request. It the table position where the magic number matches the table entry. In the dsp_control.asm this index is used as a "jump handler" to the routines which transfer the audio control parameters to the DSP.

5.2.2. Examples

An example will illustrate how a new feature is added.

5.2.2.1. How to add new Features and Requests

We want to add the loudness function as an additional tone control in the audio path. This is already implemented in the DSP and only needs to be activated. In order to do that we need the following steps.

How to change the Descriptor

We need to modify the feature unit 1 (FU1) in the following way:

.ec	Įu	FU_ID1	1	
;CS-specif	ic Feature U	Init Descript	tor	
.by	/te	0x0d		;bLength
.by	/te	0x24		;Audio class specific interface desc
.by	/te	0x06		;Feature Unit descriptor
AUDIO_F	EATURE_U	JNIT_ID1:		
.by	/te	FU_ID1		;Unit ID
.by	/te	MU_ID9		;Source ID
.by	/te	IT_ID12		;Source ID ###KS
.by	/te	0x02		;ControlSize Length in bytes of bmaControls
.rv	vord	0x0355		;bmaControls(0);defines supported features in master channel
.rv	vord	0x0002		;bmaControls(1);defines supported features in log. channel 0
.rv	vord	0x0002		;bmaControls(2);defines supported features in log. channel 1
.by	/te	0x00		;iFeatureindex of string descriptor, descr. feature unit

Loudness works on both channels, so we need to modify the bma Control(0), which lists all feature in the master channel (all features which cannot controlled separetely for left and right channel are listed here). Looking into the audio class spec tells us that loudness is activated by bit9 in the bma-Control(0). So the new bmaControl is:

.rword 0x0355

;bmaControls(0)

How to implement the Request Handling

Upon enumeration the host now knows that the device supports loudness, and tries to read the characteristics of this feature. The only parameter of interest here is a boolean variable, that switches loudness on and off. Unlike volume requests or bass/treble request there are no MIN/MAX/RES parameters here. So we only have to extend the SET-table.

We add Request Nr. 18:

Request Nr.	wInd- exH	wValueH	wValueL	magic number	Request Name		
18	1	10	0	296	FU1_LOUDN_CUR		

...

The magic number according to the formula:

(wIndexH-1) + wValueH*16 + wValueL*256 is then

0 + 10x16 + 0x256 = 160

This number is added at the end of the set-table

...

.rword	280	; MU9_IN1_CUR
.rword	296	; MU9_IN2_CUR
.rword	160	; FU1_LOUDN_CUR

This allows to detect if the host wants to set or get the CUR-value.

Now	we	need	to	add	a	new	RAM-variable		
USB_	FU1_	LOUDN	CUR	R, whic	h hơ	olds the	CUR-status:		

SB_SU8_CUR:	.rword	0x0000	;15
USB_MU9_IN1_CUR:	.rword	0x0000	;16
USB_MU9_IN2_CUR:	.rword	0x0000	;17
USB_FU1_LOUDN_CUR:	.rword	0x0000	;18

Remember: the set-table and the CUR-table are both located in usb_audio_ctl_include.asm

How to implement the DSP-control

From the USB-host point of view everything is ok now: the device reports loudness as an audio feature, the device accepts setting the CUR-value, and the device reports the CUR-value. But there is still one action missing: the V8 needs to switch the loudness function on and off in the DSP.

jeq XDFP_RECORD_SELECT;14 dec r0 jeq XDFP_ANALOG_VOLUME;15 dec r0 jeq XDFP_USBDOWN_VOLUME;16 dec r0 jeq XDFP_LOUDNESS rts

and then, of course, we need to add the new routine XDFP_LOUDNESS. The easiest way to do this is to copy and paste an already existing function and change some names

XDFP LOUDNESS:

.equ	XDFPADR_PLAYBACK_LOUDN0x15	; XDFP-ADDRESS for Loudness
.equ	XDFP_LOUDNESS0x30	
; XDFI	P needs 0x00=Loudness-OFF	; 0x30=Loudness-ON
; USB	sends 0=Loudness-OFF 1=Loudness-ON	
ldi	r2, XDFP_LOUDNESS	; this defines the Loudness-Characteristic
lda	r1, USB_FU1_LOUDN_CUR	
brne	LOUDNON	
lda	r2, 0x00	; Loudness off
LOUD	NON:	
ldi	r1, XDFPADR_PLAYBACK_LOUDN	
jmp	XDFP_SEND_3BYTES	;sends Loudness,0,0 (Hi,Mi,Lo) with rts

Another option here would be to put the XDFP_LOUDNESS into the Section1 as a parameter that comes from the EEPROM, because the loudness characteristic in the DSP can be set to various modes. Using 0x30 is just one example. See the document UACB – DSP firmware for more info on the loudness. This happens in dsp_control.asm. This routine is called after the SET-request and uses the RAM-variable SET_INDEX as branching control to the corresponding DSP-control-routines. The SET_INDEX is the SET-table position of the detected request, i.e. 18 for our new request.

We extend the branch structure in dsp_control.asm

Initialisation

The DSP sets all variables to zero after power up. This means for our example that loudness is off. This, however has to correlate with the CUR-value in the V8. Without any

... ;

init the Audio_Class

ldi r0,0x80sta r0, USB_FU1_VOL_CH1_CUR;mute the playback volumesta r0, USB_FU1_VOL_CH2_CUR;mute the playback volumeldi r0, 0x01;mute the playback volumesta r0, USB_SU7_CUR;init the SU7 to Mic-Inputxor r0sta r0, USB FU1 LOUDN CUR

Now everything is ready to switch Loudness on and off under control of the operating system. Unfortunately the WIN mixer does not provide any controls to do that, so this feature was not implemented in the standard firmware.

Fig. 5–3:


initialisation the CUR-values are all set to zero after power up and this is exactly what we need. But it is recommended to always do the initialisation. This is done in the main include.asm.

5.3. DSP Control

The code in dsp_control.asm handles the communication between the V8 and the DSP. In the standard firmware its is a one-way communication, which means, data are sent to from the V8 to the DSP, but nothing is read back. Other applications, however, may require this, and therefore the hardware is prepared to do that.

This hardware is highlighted first because it is essential for understanding this communication.

The next figure shows the control interface between V8 and DSP:

Fig. 5–4:

The DSP-RAM has a wordlength of 18-bit and so we need 3-bytes from the V8 to completely write one DSP-location. So we have 3-bytes both for each direction. In case of writing into the DSP these bytes are named:

- XDFP_DATAIN_HI
- XDFP_DATAIN_MI
- XDFP_DATAIN_LO

and this bytes represent one DSP word as follows:

XDFP_DAT AIN_	HI-7	HI-6	HI-5	HI-4	HI-3	HI-2	HI-1	HI-0	MI-7	MI-6	MI-5	MI-4	MI-3	MI-2	MI-1	MI-0	LO-1	LO-0
DSP-word	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

The address space of the DSP is 10-bit, so we need 2-bytes to address this. This bytes are named:

- XDFP_ADR_HI
- XDFP_ADR_LO

and build the DSP_address plus R/W -control as follows:

XDFP_ADRHI7 _	_HI6 _HI5	_HI4	_HI3	_HI2	_HI1	_HI0	_LO7	_LO6	_LO5	_LO4	_LO3	_LO2	_LO1	_LO0
DSP_ ADDRESS				0= RD 1=WR	9	8	7	6	5	4	3	2	1	0

The Read, Write, Busy status-bits are needed as handshake signals. Their meaning will become clear after the description of the write and read sequence below:

Write Sequence:

V8 has to transmit:

- XDFP_DATAIN_LO
- XDFP_DATAIN_MI
- XDFP_DATAIN_HI
- XDFP_ADR_HI
- XDFP_ADR_LO

The transmission of the low-addressbyte generates the write-interrupt for the DSP and sets the W- and B-bit in the statusregister.

The W- and the B-Bit are reset, when the DSP reads the indata-register

The W-bit is redundant here and is not used in the standard firmware

Read Sequence

V8 has to transmit:

- XDFP_ADR_HI
- XDFP_ADR_LO

The transmission of the low-addressbyte generates the readinterrupt for the XDFP and sets the R- and the B-bit. The DSP reads the address and writes the required data word into the out-data register This resets the R-bit.

V8 has to poll the R-bit and fetch the 3-bytes after the R-bit is reset:

- XDFP_DATAOUT_HI
- XDFP_DATAOUT_MI
- XDFP_DATAOUT_LO

The B-bit is reset after the LO-data is fetched from the V8.

The write-sequence is already implemented in the standard firmware and there should be no need to change this. The routine is located in the upper-rom and is called **XDFP_SEND_3bytes**. This routine handles the complete write sequence, including the handshake (using B-bit).

The values are passed by registers:

- $r1 = XDFP_ADR_LO$
- $r2 = XDFP_DATAIN_HI$
- $r3 = XDFP_DATAIN_MI$
- $r4 = XDFP_DATAIN_LO$

There is no XDFP_ADR_HI and so only the lower 256 words within the DSP-RAM-space can be addressed with this routine. The DSP-firmware, however, holds all control variables within this lower address space, so there is no need for the HI-byte.

In the same way a **XDFP_READ_3bytes** can be created.

5.4. Sample Rate Control

The samplerate requests are endpoint control requests and are needed for ISO upstreaming. The SET_SAMPLERATE tells the device how many audio samples per frame the host expects. The samplerate is represented as a 3-byte word, but for the UACB samplerate range (6.4kHz ...48kHz) only 2-bytes are required, so the high byte is ignored for further processing.

The samplingrate is specified in Hz. So 0x00bb80 is transferred with the SET_SAMPLERATE request, when 48000Hz is required. This number is the input for an algorithm that computes the number of samples per frame, i.e. samples per millisecond, what is basically a "devide by 1000" operation in case of "integer multiples of 1000" samplerates. In all other cases the "devide by 1000" algorithm result in a nonzero remainder. This remainder is then accumulated 1000 times and when the accumulator overflows an additional sample is transmitted.

The samplerate goes into the DSP too. Here it is needed as an initial value for the samplerate conversion.

- **Note:** The A/D conversion is running on 48kHz, independantly of what the iso-upstream requires. The adaption to the required samplerate is done by samplerate conversion.
- **Note:** It is observed that SET_SAMPLERATE is also transferred preceeding an iso-downstream. This was not the case with downstream-only devices (UACA). Here this information is not required but on the other hand it is not allowed to stall this request. So it is handled also. Otherwise the host would never send iso-downstream data.

The following samplingrate request are supported:

- SET CUR
- GET CUR
- GET MIN
- GET MAX
- GET RES

After a SET CUR request the samples per frame are calculated and stored in the upstream BDT.

At this point the complete algorithm is running including the "devide by 1000" code ("subtract 1000 until result is negative").

During ISO-uopstream only the fractional part of the "samples per frame" algorithm is computed. The integer part does not change at a given samplerate.

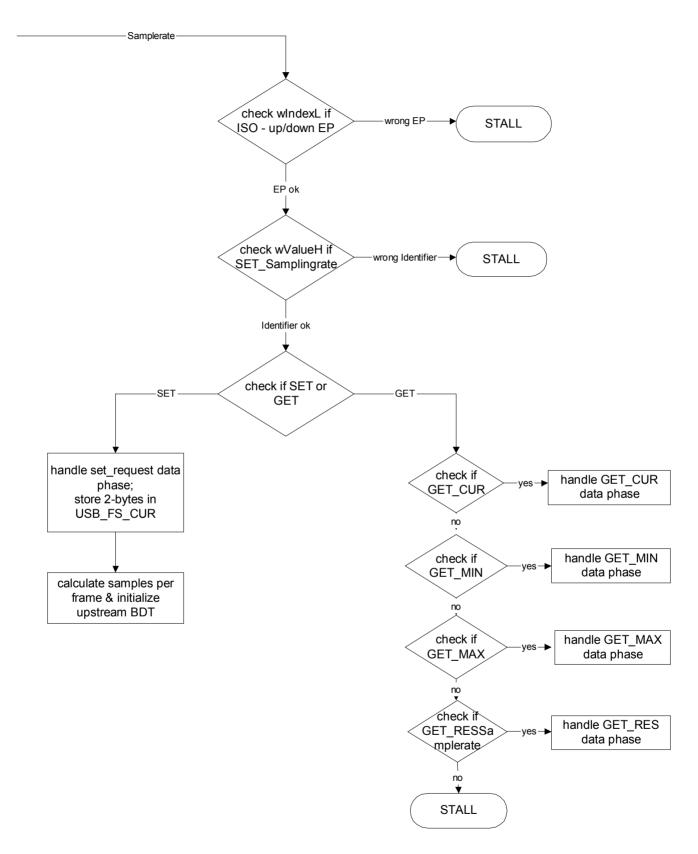


Fig. 5–5: Sample rate control handling

6. GPIO Handling

This chapter describes the usage of the 12 GPIO pins. First a description of the various modes is given.

Each GPIO-pin can be used either as input or as output pin. The direction of each pin is defined in the following hard-ware control registers:

_LO defines GPIO0....7LSB == GPIO0, MSB == GPIO7

_HI defines GPIO8..11LSB == GPIO8; BIT3 == GPIO11

GPIO_CONFIG_LO0xb0510 = input; 1 = output GPIO_CONFIG_HI0xb058

In case of output, the padstrength (value???) can be set to either high or low: (for other pins see the UACB – V8 reference)

GPIO PADSTRENGTH LO:0xb0550 = weak; 1 = strong

GPIO_PADSTRENGTH_HI:0xb056

In case of input, an internal pulldown (250k) can be switched either on and off

GPIO_PULLDOWN_LO0xb0590 = pulld. on; 1 = pulld. off GPIO_PULLDOWN_HI0xb05a

The standard firmware defines the default GPIO characteristic in Section1:

SED_DEFAULT_GPIO_CONFIG_LO_DEFAULT:; default 0, 1 = output
.byte 0x00

SED_DEFAULT_GPIO_CONFIG_HI_DEFAULT:; default 0, 1 = output
.byte 0x00

SED_DEFAULT_GPIO_PULLDOWN_LO_DEFAULT:; default: 1 (pulldown on) .byte 0xff

```
SED_DEFAULT_GPIO_PULLDOWN_HI_DEFAULT:; default: 1 (pulldown on)
.byte 0xff
```

SED_DEFAULT_GPIO_PADSTRENGTH_LO_DEFAULT:; default: 0 (weak) .byte 0x00

SED_DEFAULT_GPIO_PADSTRENGTH_HI_DEFAULT:; default: 0 (weak) .byte 0x00

This values are copied from the bootloader into the Section1 RAM mirror image (see Section1 concept) and from there copied into RAM shadow registers. This was required because the hardware control register are read only and so the V8 needs to keep track of the actual status either for internal purpose or for reporting it to an external controller (USB-Host, I2C-Controller etc). This is used for some other hardware register too. Unfortunately this wastes some RAM space The following sequence (including the RAM addresses) can be found in main_include.asm:

- A709 lda r0, GPIO_CONFIG_LO_DEFAULT
- A184 sta r0, GPIO_CONFIG_LO_SHADOW
- A70A lda r0, GPIO_CONFIG_HI_DEFAULT
- A185 sta r0, GPIO_CONFIG_HI_SHADOW
- A70B lda r0, GPIO_PULLDOWN_LO_DEFAULT
- A186 sta r0, GPIO_PULLDOWN_LO_SHADOW
- A70C lda r0, GPIO_PULLDOWN_HI_DEFAULT
- A187 sta r0, GPIO_PULLDOWN_HI_SHADOW
- A70D lda r0, GPIO_PADSTRENGTH_LO_DEFAULT
- A188 sta r0, GPIO_PADSTRENGTH_LO_SHADOW
- A70E lda r0, GPIO_PADSTRENGTH_HI_DEFAULT
- A189 sta r0, GPIO_PADSTRENGTH_HI_SHADOW

The shadow registers are then copied into the hardware register in the routine V8_RESTORE_SHADOW_REGS (also located in main_include.asm). The routine V8_RESTORE_SHADOW_REGS runs after RESET and is also called in the scheduler taks 5 (see "The Scheduler Concept"). By setting the associated scheduler bit the routine runs every 1ms.

This automatic update allows to control the GPIOs just by setting the shadow registers. In this case, however, it must be observed that there may be a delay of up to 1ms between writing into the shadow registers and the update of the hardware register. If this delay is not acceptable, the hardware

The status of the lower bits 0...7 is defined in: b0A0GPO REG[0:7]

The status of the upper bits 8...11 is defined in:

b0A1GPIO_REG[4...7]

The status of the lower input pins 0...7 is found in: b0A2GPI_REG[0...7]

The status of the upper input pins 8...11 is found in b0A1GPIO_REG[0...3]

Here we don't need the shadow register concept, because all this register are readable.

Note: The standard firmware uses only GPIO0..3 as input pins for the HID functions.

registers needs to be controlled directly. In this case, however, it is strictly recommended to update the shadow registers too, in order to have identical information in both hardware and shadow registers.

In most applications the configuration of the GPIOs will be static, i.e: a pin is either input or output, with or without pulldown etc., and this configuration is defined in section1 as default data.

More important for applications, however, is the writing or reading to or from the GPIO pins itself.

6.1. Memory Mapped Mode

The GPIOs can also be used in a memory mapped mode. This means the address range

b0b0...b0bf

How does the standard firmware use the GPIOs?

Looking into the report descriptor tells that four HID audio control functions are defined:

; assigned real keys

.rword	0xE909	; Usage Volume UP
.rword	0xEA09	; Usage Volume DOWN
.rword	0xE209	; Usage MUTE
.rword	0xE509	; Usage BASS BOOST

This functions are assigned to the GPIO0...3. High level at GPIO0 ramps up the volume for example.

This means this pins need to be polled by the V8, in order to report their state on request to the host.

6.2. Debouncing

For debouncing a simple timer function is used. After detection of high level at one of the GPIO..3 a timer (KEY_TIMER) is started (software timer) counting from MAX_KEY_TIMER down to zero. MAX_KEY_TIMER is defined in Section1

SED_DEFAULT_MAX_KEY_TIMER:

.byte 0x7f

As long as the counter did not finish zero, there is no new polling. This timer also defines the repetition rate of a permanent pressed key (defines for example, how fast the volume slider in the WIN mixer goes up and down).

Note: This simple method does not protect from noise or spikes on the pins. For this kind of problems averaging algorithm should be used.

the addressbus. This means for example, writing a 0xaa to b0bf results in 0xaa at the GPIO0...7 and 0xf at GPIO8...11. In this mode the GPIO8...11 need to be set as output pins, of course.

is transparent to the GPIOs. GPIO0..7 are mapped to the

databus and GPIO8...11 are mapped to the lower four bits of

As polling rate the 1ms timebase is used, which is provided in the scheduler. Scheduler task 0 calls the routine USB_GET_KEY located in gpio_control.asm. Some notes on the USB_GET_KEY is given below.

6.3. Reporting the Keycode

according to the HID endpoint descriptor the USB-host sends IN-tokens to the EP3 at a fixed rate which is defined in the

.byte 0xfe;bInterval

variable. The standard firmware holds this value as a Section1 variable (see "The FE-concept")

.from data_sec1.asm.

SED_DEFAULT_USB_CONFIG_ATTRIBUTES_CUSTOM:

.byte 0xc0 ; bmAttributesattributes - self powered

.byte 0x00 ; MaxPowerself-powered draws 0 mA from the bus.

.byte 0x08 ; bInterval, TR 7.7.99 was the *last* byte of the config_descriptor

0x08 means, that the IN-token comes every 8ms or in every 8^{th} frame.

The IN-token expects to get the number of the key, which may be pressed, as a so called keycode in the data phase. So, for example, if high-level at GPIO3 is dedected, a 0x0003 is reported after the next IN-token. The USB-host associates this keycode with the HID function MUTE-toggle. The standard firmware uses 2-bytes in the data phase.

Note: Also the unassigned keys are reported (GPIO4...7) and can be used for vendor specific purpose.

6.4. Toggle Keys

GPIO2 (mute) and GPIO3 (bassboost) are used as toggle keys. This means, if this keys keep pressed all the time, it is not wanted that the assigned function toggles between on and off. The state should just toggle once and stay there until the key is released and pressed again. Although there may be a smarter way to do it, this is solved by sending a "keycode without function" after the keytimer accepts a new polling. Without this the same keycode would be sent all the time.

;;HID Endpoint Descriptor

.byte0x07;bLength

.byte0x05;bDescriptortype = Endpoint

. by te0x 83; bEndpoint Address

.byte0x03;bAttributes

.rword0x0002;wMaxPacketSize;db 29.09.1999 0305 because of ext. HID

.byte0xfe;bInterval TR 7.7.99 moved to EEPROM

6.5. GPIO port configurations.

The UAC 357xB can set the GPIO port into different configurations.

- Standard mode
- Address mode

The GPIOs can be grouped in 2 different types:

- Input and output pins: GPIO[0..11]

Table 6-1: GPIO port configurations

- Control pins: RD, STRB

The port pins can also be set into different electrical states:

- weak or strong driver strength
- output or tristate
- internal pulldown on or off

Pin name	Standard mode	Address mode
GPIO [0]	– Generic I/O	Generic parallel I/O
	– HID: Volume down	
GPIO [1]	– Generic I/O	Generic parallel I/O
	– HID: Volume up	
GPIO [2]	– Generic I/O	Generic parallel I/O
	– HID: Mute button	
GPIO [3]	– Generic I/O	Generic parallel I/O
	– HID: Bass boost button	
GPIO [4]	Generic I/O	Generic parallel I/O
GPIO [5]	Generic I/O	Generic parallel I/O
GPIO [6]	Generic I/O	Generic parallel I/O
GPIO [7]	Generic I/O	Generic parallel I/O
GPIO [8]	Generic I/O	Adr [0]
GPIO [9]	Generic I/O	Adr [1]
GPIO [10]	– Generic I/O	Adr [2]
	– Start timer	
GPIO [11]	– Generic I/O	Adr [3]
	– PWM out	
RD	no function	Shows I/O direction
		Read (high level) input Write (low level) output
STRB	no function	Strobe pulse, marks valid data

6.6. The parallel interface mechanism (RD/STRB)

The controlling processor (V8) is able to access external components using the GPIO-pins together with the pins RD and STRB as a parallel interface.

In this mode, the GPIO[7:0] are used as 8-bit data bus and the GPIO[11:8] as address bus. The state of the pin RD tells the external device if the V8 is going to read from or write into it. HIGH means "read", LOW means "write". In case of a write-access into an external device, this device has to be informed when the data on GPIO are stable (valid). This information provides the STRB-pin. At it's positive edge, the data are valid and can be read by the external device.

address

(external device drives datalines)

UACB reads data here

data

As shown in the timing, it takes 3 clocks (12MHz each) for 1 transaction. The interface, however, can be reprogrammed to reduce the transaction-time to 2 clocks (for example if a fast periphery is attached).

It's important to note that after finishing an access, the parallel interface releases the I/O-control over the GPIO[11:0]. Now the contents of the I/O-configuration registers V8W_PIO and V8W_PIO2 again take control of the GPIO[11:0]-direction. Therefore it is important to customize these registers according to the external circuitry to avoid driver crashes or floating inputs. A good approach is to program all GPIO's to output and connect the CS/CE (ChipSelect/ChipEnable) of the external components to the STRB/RD-pins in a way, that their drivers onto GPIO[7:0] are activated only when RD= STRB= HIGH.

UAC357xB parallel interface timing UACB reads from extern device (address is driven by UACB) UACB vrites to extern device (address is driven by UACB)

(UACB drives datalines)

data

valid data

Fig. 6–1: gives an overview of the architecture of the UACB.

xto

RD

STRB

GPIO[11:8]

GPIO[7:0]

7. Alternate Downstream ISO Endpoint

7.1. How to use the alternative downstream ISO-Endpoint

```
The descriptor
```

*	
.equ EP2 IFC NR	5
.equ EP2 OUT ADR	0x02
.equ USB_EP2_BUFFER_SIZE	0xC0
·	
;;Standard Interface Descriptor for alternate	e setting 0
.byte 0x09	;blength Length of this desriptor
.byte 4	;bDescriptorType 4=INTERFACE
.byte EP2_IFC_NR	;bIfaceNum interface number
.byte 0	;bAltSetting Alternate setting 0
.byte 0x00	;bNumEndpoints Number of endpoints= use EP0 only
.byte 0xFF	;blfaceClass Interface class
.byte 0xFF	;bIfaceSubClass
byte 0xFF	;bIfaceProtocol
.byte 0x00	;iInterface String
.byte 4 .byte EP2_IFC_NR .byte 1 .byte 0x01 .byte 0xFF	; bDescriptorType 4=INTERFACE ; bIfaceNum interface number ; bAltSetting Alternate setting ; bNumEndpoints Number of endpoints ; bIfaceClass Interface class
.byte 0xFF	; bIfaceSubClass
.byte 0xFF	; blfaceProtocol
.byte 0x00	; iInterface String
;;EP2 Out-Endpoint Desriptor	
.byte 7	; bLength Length of this descriptor
.byte 5	; bDescType ENDPOINT
.byte EP2_OUT_ADR	; bEndpointAddress
.byte 0x01	; bmAttr: its a ISO endpoint
.rword USB_EP2_BUFFER_SIZ	· ·
	rval - for isochronous EPs must be set to 1
,	

8. Appendex 1: SDK

-> von W. Platzer bis KW 26

9. Appendix 2: DSP Firmware

9.1. Overview

Figure 9–1 gives an overview of the signal flow inside the DSP firmware. Table 9–1 summarizes the two feature sets.

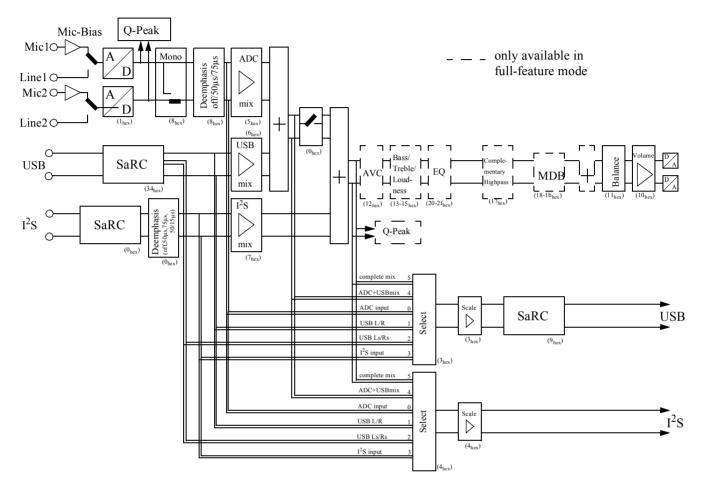


Fig. 9–1: block diagram of XDFP firmware

Table 9–1: Feature set overview ((x) = not implemented in version A0-C2)

features	reduced	full	feature	reduced	full
Mic/Line input incl. Mic-Bias	х	х	Balance	х	Х
deemphasis	Х	х	Volume	Х	Х
USB downstream (6.4 48 kHz)	Х	х	DAC L/R	х	х
synchr./asyn. I ² S input	х/-	x/(x)			
Mixer	Х	х	Micronas Dynamic Bass	-	Х
AVC/Bass/Treble/Loudness	-	х	USB upstream (6.4 48 kHz)	х	Х
parametric EQ	-	х	synchr. I ² S output	х	Х

9.2. User Registers

Register Address	Function			Name
A/D- D/A (CONVERTE	R CONF	IGURATION	
00 01 _{hex}	Converte	er Configu	uration (Reset 0x00)	CONV_CONF
	bit [1714] AD	DC left amplifier gain	
	bit [1310] AD 11111 1110 1101 1100 1011 1000 0111 0100 0111 0100 0011 0010 0001 0000	DC right amplifier gain +19.5 dB +18.0 dB +16.5 dB +15.0 dB +13.5 dB +12.0 dB +10.5 dB +9.0 dB +7.5 dB +6.0 dB +4.5 dB +3.0 dB +1.5 dB -1.5 dB -3.0 dB (reset)	
	bit [9]	0/1	Microphone Bias	
	bit [8]	0/1	pseudo Differential Mode Line In right	
	bit [7]	0/1	pseudo Differential Mode Line In left	
	bit [6]	0/1	Line-in R/Microphone R selected for ADC right	
	bit [5]	0/1	Line-in L/Microphone L selected for ADC left	
	bit [4]	0/1	off/on ADC left	
	bit [3]	0/1	off/on ADC right	
	bit [21]	0	undefined	
	bit [0]	0/1	Headphone off/on (DAC only), (<i>Default is off</i>). if headphone dacs are switched on, the headphone opamps must be enabled (V8: Analog Control bit[7]=1).	

Register Address	Function		Name
I ² S-CONF	IG		
00 00 _{hex}	I2S-config	(Reset 0x00)	I2S_CONFIG
	bit [17]	co-processor mode 0 : mix of USB, ADC and I2S input to DAC 1 : only I ² S input to DAC	
	bit[16]	I ² S input sync mode 0 : synchronous (f _s =48 kHz) 1 : adaptive slave (f _s =6.4 48 kHz)	
		Note : if bit[16] is set, the USB downstream is only supported with decreased performance.	
	bit[15:10]	Deemphasis select 0 : deemphasis off 1 : deemphasis 50 μs 2 : deemphasis 75 μs 3 : deemphasis 50/15 μs	
	bit [9:7]	reserved, must be set to zero	
	bit [6]	I ² S input wordstrobe polarity 0 : 1-left, 0-right 1 : 0-right, 1-left	
	bit [5]	I ² S input wordstrobe strobe justification 0 : WS changes at data word boundaries 1 : WS changes one clock cycle in advance	
	bit [4]	I ² S output wordstrobe polarity 0 : 1-left, 0-right 1 : 0-right, 1-left	
	bit [3]	I ² S output wordstrobe strobe justification 0 : WS changes at data word boundaries 1 : WS changes one clock cycle in advance	
	bit [2]	I ² S output timing generator settings 0 : 2*32 bit (3.072 MHz) 1 : 2*16 bit (1.536 MHz)	
	bit [1:0]	reserved, must be set to zero	
	Note: bit[9:	2] available only in D3-hardware	
MODE SE	LECT		
00 02 _{hex}	clock and f	ceature set select (Reset 0x01)	DSP_CLK
	bit [17:2]	reserved, must be set to 0	
	bit [1:0]	mode0full feature set (f_{clk} =72 MHz)1reduced feature set (f_{clk} =48 MHz)	

Register Address	Function		Name
ANALOG	INPUT PROC	CESSING	
00 08 _{hex}	Input Mod	e Setting	ADC_IN_MODE
	bit [17]	Mono switch0stereo through1left channel is copied into the right channel	
	bit [15:4]	Reserved, must be set to 0	
	bit [3:2]	Deemphasis select 0 deemphasis off 1 deemphasis 50 μs 2 deemphasis 75 μs	
	bit [1:0]	Reserved, must be set to 0	
USB UPST	REAM PARA	AMETERS	
00 09 _{hex}	USB upstre	eam settings	USB_OUT_FS
	bit [17:2]	Sample Frequency in Hz (e.g. $44.1 \text{ kHz} = \text{AC44}_{\text{hex}}$)	
	bit [1:0]	number of channels 00 mono 01 stereo	
USB DOW	NSTREAM P	PARAMETERS	
00 34 _{hex}	USB downs	stream setting	USB_IN_CHANS
	bit [17:2]	Reserved, must be set to 0	
	bit [1:0]	number of channels 0_{hex} mono 1_{hex} stereo 3_{hex} 4 channels (maximum fs=24 kHz !)	

Register Address	Function			Name
OUTPUT	SOURCE SEL			
00 03 _{hex}	USB upstream source selector			USB_OUT_SEL
	bit [17:10]	Scale factor 79_{hex} 78_{hex} 74_{hex} 73_{hex} 72_{hex} 02_{hex} 01_{hex} 00_{hex}	table with 1 dB step size +6 dB (maximum volume) +5 dB +1 dB 0 dB -1 dB -113 dB -114 dB mute (reset condition)	
	bit [9:2]	Source Select 0_{hex} 1_{hex} 2_{hex} 3_{hex} 4_{hex} 5_{hex}	ADC input USB downstream channels 1+2 USB downstream channels 3+4 I ² S input mix of ADC + USB downstream complete mix	
	bit [1:0]		ust be set to 0	
00 04 _{hex}	I²S source s bit [17:10]	79_{hex} +6 dB (maximum volume)		I2S_OUT_SEL
		78_{hex} 74_{hex} 73_{hex} 72_{hex} 02_{hex} 01_{hex} 00_{hex}	+5 dB +1 dB 0 dB -1 dB -113 dB -114 dB mute (reset condition)	
	bit [9:2]	Source Select 0_{hex} 1_{hex} 2_{hex} 3_{hex} 4_{hex} 5_{hex}	ADC input USB downstream channels 1+2 USB downstream channels 3+4 I ² S input mix of ADC + USB downstream complete mix	
	bit [1:0]	Reserved, m	ust be set to 0	

Register Address	Function		Name
MIXER U	NIT		
00 05 _{hex} 00 06 _{hex} 00 07 _{hex}	ADC mixing USB downs I ² S mixing	MIX_ADC MIX_USB MIX_I2S	
	bit [17:10]	Scale factor table with 1 dB step size 79_{hex} +6 dB (maximum volume) 78_{hex} +5 dB 74_{hex} +1 dB 73_{hex} 0 dB 72_{hex} -1 dB 02_{hex} -113 dB 01_{hex} -114 dB 00_{hex} mute (reset condition)	
	bit [9:0]	Reserved, must be set to 0	
BASEBAN	D PROCESSI	NG	1
00 13 _{hex}	Bass		BASS
	bit [17:10]	Bass range 60_{hex} +12 dB 58_{hex} +11 dB 08_{hex} +1 dB 00_{hex} 0 dB $f8_{hex}$ -1 dB $a8_{hex}$ -11 dB $a0_{hex}$ -12 dB	
	Higher resol 1/8 dB.	ution is possible, one LSB step results in a gain step of about	
		e bass settings clipping of the output signal may occur. Therefore, it is ended to set bass to a value that results in conjunction with volume to an ive gain.	
	bit [9:0]	Reserved, must be set to 0	

Register Address	Function	Name
00 14 _{hex}	Treble	TREBLE
	bit [17:10] Treble range 60_{hex} +12 dB 58_{hex} +11 dB	
	$ \begin{array}{cccc} & & & & \\ & & & & & \\ & & & & & \\ & & & & $	
	$ \begin{array}{ccc} a8_{hex} & -11 \text{ dB} \\ a0_{hex} & -12 \text{ dB} \end{array} $	
	Higher resolution is possible, one LSB step results in a gain step of about 1/8 dB.	
	With positive treble settings, clipping of the output signal may occur. Therefore, it is not recommended to set treble to a value that results in conjunction with volume to ar overall positive gain.	
	bit [9:0] Reserved, must be set to 0	
00 15 _{hex}	Loudness	LDNESS
	bit [17:10] Loudness Gain 44_{hex} +17 dB 40_{hex} +16 dB 04_{hex} +1 dB 00_{hex} 0 dB	
	bit [9:2] Loudness Mode 00 _{hex} normal (constant volume at 1 kHz) 04 _{hex} Super Bass (constant volume at 2 kHz)	
	bit [1:0] Reserved, must be set to 0	
	Higher resolution of Loudness Gain is possible: An LSB step results in a gain step of about 1/4 dB.	f
	Loudness increases the volume of low- and high-frequency signals, while keeping the amplitude of the 1-kHz reference frequency constant. The intended loudness ha to be set according to the actual volume setting. Because loudness introduces gain, is is not recommended to set loudness to a value that, in conjunction with volume would result in an overall positive gain.	s t
	The corner frequency for bass amplification can be set to two 2 different values. In normal mode, the point of constant volume is at 1kHz. In Super Bass mode, the point of constant volume is at 2kHz.	

Register Address	Function		Name
00 0e _{hex}	D/A output	DAC_OUT_MODE	
	bit [17]	Mono switch0stereo through1mono matrix applied	
	bit [16]	Invert right channel 0 through 1 right channel is inverted	
	bit [15:0]	Reserved, must be set to 0	
		achieve more output power a single loudspeaker can be connected as a teen pins OUTL and OUTR. In this mode bit[17] and bit[16] must be set.	

Register Address	Function	Name		
MICRONA	AS DYNAMIC	C BASS (MI	DB)	
00 18 _{hex}	MDB Effec	t Strength		MDB_STR
	bit[17:10]	00hex 7Fhex	MDB OFF (default) maximum MDB	
	The MDB e medium MI		h can be adjusted in 1dB steps. A value of 44hex will yield a	
	bit[9:0]	00hex	must be zero	
00 19 _{hex}	MDB Harn	nonic Conte	nt	MDB_HMC
	bit[17:10]	00 _{hex} 40 _{hex} 7F _{hex}	no harmonics are added (default) 50% fundamentals + 50% harmonics 100% harmonics	
	The MDB e creating har (MDB_HP) cutoff frequ towards the			
	bit [9:0]	00 _{hex}	must be zero	
00 1a _{hex}	MDB Cente	MDB_FC		
	bit[17:10]	2 3	20 Hz 30 Hz	
		30	300 Hz	
	The MDB c			
	bit[9:0]	00 _{hex}	must be zero	
00 1b _{hex}	MDB Amp	MDB_LIM		
	bit[17:10]	00 _{hex} FF _{hex}	0 dbFS (default, no limitation) -1 dbFS	
		 E0 _{hex}	-32 dbFS	
	The MDB A the MDB re MDB is auto			
	bit[9:0]	00 _{hex}	must be zero	

Register Address	Function		Name
VOLUME			
00 10 _{hex}	Main Volun	ne Control	VOLUME
	bit [17:10]	Volume table with 1 dB step size $7f_{hex}$ +12 dB (maximum volume) $7e_{hex}$ +11 dB 74_{hex} +1 dB 73_{hex} 0 dB 72_{hex} -1 dB 02_{hex} -113 dB	
		$01_{\text{hex}}^{\text{Hex}}$ -114 dB	
	bit [9:0]	00 _{hex} mute (reset condition) Reserved, must be set to 0	
	This main vo digital and an	blume control is applied to the analog outputs only. It is split between a n analog function. In order to avoid noise due to large changes of the set- nal setting is internally low-pass filtered.	
	With large so	cale input signals, positive volume settings may lead to signal clipping.	
00 11 _{hex}	Balance		BALANCE
	bit [17:10]	Balance range 7F _{hex} Left -127 dB, Right 0 dB 7E _{hex} Left -126 dB, Right 0 dB	
		$\begin{array}{llllllllllllllllllllllllllllllllllll$	
		 81 _{hex} Left 0 dB, Right -127 dB 80 _{hex} Left 0 dB, Right -128 dB	
	bit [9:0]	Reserved, must be set to 0	
		nce settings reduce the left channel without affecting the right channel; ings reduce the right channel leaving the left channel unaffected.	
00 12 _{hex}	Automatic V	Volume Correction (AVC) Loudspeaker Channel	AVC
	bit [17:14]	00_{hex} AVC off (and reset internal variables) 08_{hex} AVC on	
	bit [13:10]	08_{hex} 8 sec decay time 04_{hex} 4 sec decay time 02_{hex} 2 sec decay time 01_{hex} 20 ms decay time (intended for quick adaptation to the average volume level after track or source change)	
	bit [9:0]	Reserved, must be set to 0	
		et the internal variables, the AVC should be switched off and then on any track or source change. For standard applications, the recommended s 4 sec.	

Table 9–3: DSP Read Registers

Register Address	Function	Name			
ADC QUA	ADC QUASI-PEAK DETECTOR READOUT				
00 0a _{hex}	A/D Converter Quasi-Peak Detector Readout Left QPEA				
	bit [14:0] positive 15-bit value, linear scale				
00 0b _{hex}	A/D Converter Quasi-Peak Detector Readout Right	QPEAK_R			
	bit [14:0] positive 15-bit value, linear scale				
DAC QUA	SI-PEAK DETECTOR READOUT				
00 0c _{hex}	Audio Processing Input Quasi-Peak Detector Readout Left DQPEAK_L				
	bit[140] positive 15-bit value, linear scale				
00 0d _{hex}	Audio Processing Input Quasi-Peak Detector Readout Right	DQPEAK_R			
	bit[140] positive 15-bit value, linear scale				

10. Appendix 3: V8 Controller Registers

V. Summa, T. Ruhnau, D. Bächer, W. Platzer, C. Noeske, M. Winterer

UAC357xB - V8 reference

10.1.Overview

Figure 10–1 gives an overview of the architecture of the UACB.

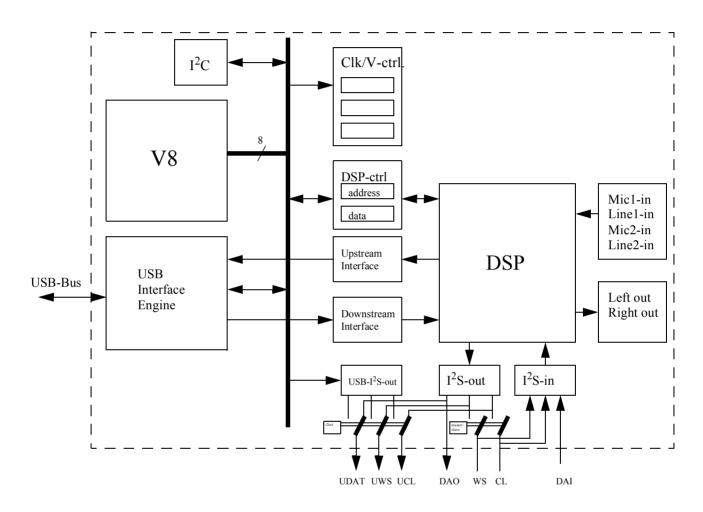


Fig. 10–1: UACB architecture

10.2.V8 Memory Layout

Table 10–1:

Adress	Function
0000 _{hex} 2fff _{hex}	12 kbytes ROM,
	lowest 8 kbytes are covered by V8 EMU RAM,
	area above 8k is used by boot loader and some other boot time routines
8000 _{hex} 9fff _{hex}	8 kbytes EMU RAM (mapped to lowest ROM area if v8_emu_reg[0] == 1
a000 _{hex} a7ff _{hex}	2 kbytes RAM
	a000 _{hex} a07f _{hex} :128 bytes BDT (16 bytes per EP)
	a080 _{hex} a0ff _{hex} :128 bytes jump table
	a100 _{hex} a10f _{hex} :16 bytes interrupt vectors
	a110 _{hex} a17f _{hex} :112 bytes stack
	a180 _{hex} a200 _{hex} :128 bytes variables
	EP7 is not being implemented so the respective 16 bytes are used for variable space.
	The lowest 32 bytes of the stack is also used for variables
	If the boot loader finds a plugin within an EEPROM the first data byte of the plugin is interpreted as offset within the jump table. The respective 'jmp' command is substituted with a jump to the plugin space.
	The RAM-clear routine clears from $a000_{hex}$ $a23f_{hex}$

10.3.V8 Peripherals & Control & Status Registers

10.3.1.V8 General & Interface Registers

 Table 10–2:
 V8 General & Interface Registers

Register Address	Function	Name
b000 _{hex}	USB control register (rw)	usb_ctl_reg
	bit[7:4] do not use (the highest prioritized interrupts (ro))	
	bit[3] = 1: Vbus (ro)	
	bit[2] = 1: suspend marker	
	bit[1] = 1: USB activity detected, set by non-idle state	
	bit[0] = 1: suspend mode, reset by non-idle state via combinational logic	
b001 _{hex}	V8 control register (rw)	v8_ctl_reg
	bit[7] = 1: GPIO[[11] is pwm_out, = 0: GPIO[11] has normal function	
	bit[6] = 1: flag used in V8 software: dont run any schedulers	
	bit[5] = 1: flag used in V8 software: dont run the boot loader	
	bit[4] = 1: use alt_iso_out, = 0 : use 'dumb_serial_interface' i.e. I2S like	
	bit[3] = 1: pullup D+ (USB connected), = 0 : D+ floating (USB disconnected)	
	bit[2] : access to sie 0: two wait states 1: three wait state	
	bit[1] : access to gpb 0: two wait states 1: one wait state	
	bit[0] : access to i2c 0: two wait states 1: one wait state	
b002 _{hex}	V8 interrupt enable register (rw) bit assignment for default priority scheme (0)	v8_int_enb
	bit[7:5] priority code (8 schemes)	
	<pre>bit[4] = 1: enable i2c_int, lowest prio, maskable by PSR[3]</pre>	
	bit[3] = 1: enable usb_int, maskable by PSR[3]	
	<pre>bit[2] = 1: enable timer_int, maskable by PSR[3]</pre>	
	bit[1] = 1: enable im_int (from XDFP) 2nd highest prio, maskable by PSR[3]	
	bit[0] = 1: enable test_int, nonmaskable with highest priority	

Register Address	Function	Name
b003 _{hex}	V8 emu register (rw)	v8_emu_reg
	bit[7]: flag used in V8 SW: I2C slave maps subaddr '0000' to '4000' -> /dev/null	
	<pre>bit[6:4] : boot error codes - visible at {usb_sws, usb_sdo, usb_sck}</pre>	
	000: boot loader terminated without error	
	001: no external EEPROM found after 5 retries	
	010: no external nor internal EEPROM found, no header loaded	
	011: header loaded but then failed loading section_1	
	100: header loaded but then failed loading section_2	
	101: header loaded but then failed loading section_3	
	110: header loaded but then failed loading section_4	
	111: persisting SCL_down or skipping the boot loader altogether	
	bit[3] = 1: (reserved)	
	bit[2] = 1: hard reset I2C only, reset after 16 clock cycles	
	bit[1] = 1: hard reset V8 only, reset after 16 clock cycles	
	bit[0] = 1: swap decoding of rom_ce and emu_ram_ce	
b004 _{hex}	V8 hardware config register (rw)	v8_hw_config
	bit[7] = 1: enable timer by sofo_ll	
	bit[6] = 1: enable timer by usb_iso_reado	
	bit[5] = 1: enable timer by usb_iso_writeo	
	bit4] = 1: enable timer by alt_usb_int (if enabled)	
	<pre>bit[3] = 0: test_bus_gnt waits 1 cycle after VUSB ISO access 1: test_bus_gnt immediately after VUSB ISO access</pre>	
	bit[2] = 1: one_clk (makes clk_sie == clk_cpu)	
	bit[1] = 1: v8_disable (grants the bus unconditionally to the test interface)	
	bit[0] = 1: dont generate pstrobe pulses for all HW-addresses (b000b0ff)	

 Table 10–2:
 V8 General & Interface Registers

Table 10-2:	V8 General	& Interface	Registers
-------------	------------	-------------	-----------

Register Address	Function	Name
16 Bit Tim	er	l
b008 _{hex}	Timer counter register low (rw)	timer_cnt_low
b009 _{hex}	Timer counter register high (rw)	timer_cnt_high
b00a _{hex}	Timer CTRL register (rw)	timer_ctl
	The current count value in the CTR can be read or written at anytime. Care must be taken when accessing the CTR when RUN is 1. No protection is provided to insure that the counter won't count in the time between reading the low and the high halves of the CTR. Generally, you should read the CTRH, then the CTRL, then reread the CTRH and compare with the first read of the CTRH. If the values are equal, then value read is correct. If the values differ, you may want to simply reread the CTR until they do match, or inspect CTRL and select the first CTRH if CTRL[7]=1 or the second CTRH if CTRL[7]=0.	
	bit[7] $r = 1$: timer interrupt (max reached), $w = 1$: reset irq bit	
	bit[6] = 1: enable timer interrupt, = 0: mask interrupt	
	bit[5] = 1: counting to MAXB, = 0: counting to MAXA	
	bit[4] = 1: retrigger when cnt=max reached, = 0: stop when cnt=max	
	bit[3] = 1: enable MAXB, = 0: use only MAXA	
	bit[2] (reserved), set to zero	
	bit[1] = 1: use EXT_ENB to enable counter, = 0: internal clock	
	bit[0] = 1: enable counter, = 0: stop counter (RUN)	
b00b _{hex}	Timer prescaler register (rw)	timer_presc_reg
	Divide the selected count enable by the value in this register plus one. 0=disable pres- cale, 1=divide by 2, 2=divide by 3, 255=divide by 256.	
b00c _{hex}	Timer MAXA low register (rw)	timer_maxa_low
b00d _{hex}	Timer MAXA high register (rw)	timer_maxa_hi
b00e _{hex}	Timer MAXB low register (rw)	timer_maxb_low
b00f _{hex}	Timer MAXB high register (rw)	timer_maxb_hi
I2C Maste	r/Slave Interface	
b010 _{hex}	I2C control register (rw)	i2c_ctl_reg
	mostly used for setting operation modes and indicating protocol phases	
	bit[7] = 1: end_of_telegram (marks the last byte of the telgram)	
	bit[6] (reserved)	
	<pre>bit[5] = 1: repeat_start (generate a repeated START condition)</pre>	
	<pre>bit[4] = 1: ignore_ack (never checks acknowledge, just reports bus_errors when no ack</pre>	
	bit[3] = 1: enable I2C interrupt	
	bit[2] = 1: master_enable, set before starting a master telegram, can be released after writing the I2C address	
	bit[1] = 1: fast mode, = 0: slow mode	
	bit[0] = 1: enable power down mode, I2C clock will stop if no transfer is active	

Table 10–2: V8 General & Interface Registre	ers
---	-----

Register Address	Function	Name
b011 _{hex}	I2C data register (rw)	i2c_data_reg
	writing a byte to the Data register turns the I2C interface into master mode and issues a bus_request if the bus is currently free.	
b012 _{hex}	I2C interrupt status register	i2c_int_stat_reg
	interrupt status and device status indication	
	bit[7] r = 1: loss of arbitration or no response from any device (see bus_active), w = 1: reset irq bit	
	<pre>bit[6] r =1: we transmitted a read device_ID (maybe we must set "end_of_telegram"</pre>	
	bit[5] r = 1: buffer_full (has received a new data byte), w = 1: reset irq bit	
	bit[4] r = 1: buffer_empty (needs a new data byte to be sent), w = 1: reset irq bit	
	bit[3] r = 1: bus_error (I2C bus hangs and is unusable), w = 1: reset irq bit	
	bit[2] (ro) = 1: first data byte received or transmitted	
	bit[1] (ro) = 1: Interface is active - slave or master	
	bit[0] (ro) = 1: Interface is in master mode	
b013 _{hex}	I2C device_ID register (left aligned) (rw)	i2c_devid_reg
	writing a byte to this register sets the device ID of the I2C interface, LSB is ignored	
USB Seria	l Data Output Interface	
b018 _{hex}	USB DAT Serial Interface (rw)	dsi_reg
	bit[7:0] Data to be written. serial out MSB first Interface Control: {polarity, rise_cnt[2:0], fall_cnt[3:0]}	
b019 _{hex}	USB DAT Serial Interface (rw)	
	bit[7:0] read: {empty, 3'b0, bit_cnt[3:0]} write: {polarity, rise_cnt[2:0], fall_cnt[3:0]}	
Audio Stre	eaming Interface	
b030 _{hex}	Audio Streaming Interface, test low byte	audio_test_low
	read next upstream byte - low	
	write next downstream byte - low (first on USB bus)	
b031 _{hex}	Audio Streaming Interface, test middle byte	audio_test_mid
	read next upstream byte - mid	
	write next downstream byte - mid	
b032 _{hex}	Audio Streaming Interface, test high byte	audio_test_high
	read next upstream byte - high	
	write next downstream byte - high, shift into fifo	
b033 _{hex}	Audio Streaming Interface, all bytes	audio_test_all
	this is the data source/sink for the two ISO interfaces, controlled by xfifo_ctl[3:0]	

 Table 10–2:
 V8 General & Interface Registers

Register Address	Function	Name
b034 _{hex}	Audio downstream format	audio_dwn_fmt
	bit[2] = 1: 4 channel audio (regardless of bit[1])	
	bit[1] = 1: stereo, = 0: mono (24 bit mono not supported)	
	bit[0] = 1: 24 bit resolution, = 0: 16 bit resolution	
b035 _{hex}	Audio upstream format	audio_up_fmt
	bit[1] = 1: stereo, = 0: mono (8 bit stereo not supported)	
	bit[0] = 1: 16bit resolution, = 0: 8bit resolution	
	interface is locked if bit[1:0] = '10'	
b037 _{hex}	Audio Interface Status (ro)	audio_up_fmt
	bit[7] 0	
	bit[6] downstream full	
	bit[5] upstream empty	
	bit[4:0] reserved	
XDFP-CO	NTROL-INTERFACE	
b042 _{hex}	High-part of XDFP-data (wo)	V8W_DHI
	bit[7:0] DSP reads these bits as bit[17:10] from I2C_DATA_IN	
b043 _{hex}	Mid-part of XDFP-data (wo)	V8W_DMID
	bit[7:0] DSP reads these bits as bit[9:2] from I2C_DATA_IN	
b044 _{hex}	Low-part of XDFP-data (wo)	V8W_DLO
	bit[7:2] reserved, should be set to zero	
	bit[1:0] DSP reads these bits as bit[1:0] from I2C_DATA_IN	
b045 _{hex}	High-part of XDFP-address & command-control (wo)	V8W_AHI
	bit[5] DSP direct register access 0 : memory 1 : register	
	bit[3:2] DSP command 00 : write 01 : read 10 : Jump to address in I2C_DATA_IN 11 : reserved, must not be used	
	bit[1:0] DSP interprets these bits as bit[9:8] of the address	
b046 _{hex}	Low-part of XDFP-address (wo)	V8W_ALO
	bit[7:0] DSP interprets these bits as bit[7:0] of the address	
b05c _{hex}	XDFP data high (Reset: 0 _{hex})	V8R_DHI
	bit[7:0] data: contains bits[19:10] of the XDFP I2C_DATA_OUT register	
b05d _{hex}	XDFP data high (Reset: 0 _{hex})	V8R_DMID
	bit[7:0] data: contains bits[8:2] of the XDFP I2C_DATA_OUT register	
b05e _{hex}	XDFP data high (Reset: 0 _{hex})	V8R_DLO
	bit[7:0] data: contains bits[1:0] of the XDFP I2C_DATA_OUT register	

Register Address	Function		Name		
MISC RE	MISC REGISTER				
b05f _{hex}	Power-Modes / DSP Status Register (ro) Reset: x0000001 _{bin} , depending on SEN-Pin		V8R_STAT		
	bit[7]	suspend enable : state of the "SEN"-pin			
	bit[6]	 suspend marker: this bit delivers the state of V8W_APP[6] 0 : normal operation 1 : IC is about to enter, is already in or has just left a suspend mode triggered by the USB-host. 			
	bit[5]	remote wakeup marker: 0 : normal operation 1 : suspend triggered by "external wake-up"			
	bit[4]	usb_sdo: used for selection of the EEPROM dev ID			
	bit[3]	usb_sck: used for selection of fail-safe mode			
	bit[2]	read active: DSP read, XDFP-control-interface-flag 0 : inactive 1 : active			
	bit[1]	write active: DSP write, XDFP-control-interface-flag 0 : inactive 1 : active			
	bit[0]	busy : DSP control interface is busy 0 : inactive 1 : active			
b06f _{hex}	UACB i2c-	-device-address initialization	V8R_ICA		
	bit[7:3]	reserved, must be set to zero			
	bit[2]	simple_i2c; pin USBWSO			
	bit[1]	failsave; pin USBDAT			
	bit[0]	i2caddr; pin USBCLK			

Table 10–2: V8 General & Interface Registers

10.4. USB Serial Engine Interface

(see VUSB Documentation)

Table 10–3: USB Serial Engine Interface

Register Address	Function	Name
b080 _{hex}	SIE interrupt status (rw) read = {2'b0, resume, sleep, tok_dne, sof_tok, error, usb_rst} writing a '1' resets the respective bit, writing to this location pops one byte out of hte usb_stat fifo	usb_int_stat
b081 _{hex}	SIE interrupt enable (rw) {2'b0, resume, sleep, tok_dne, sof_tok, error, usb_rst}	usb_int_enb

 Table 10–3:
 USB Serial Engine Interface

Register Address	Function	Name
b082 _{hex}	SIE error status (rw)	usb_err_stat
	{bts, own, dma, bto, dfn8, crc16, crc5, pid}	
	writing a '1' resets the respective bit	
b083 _{hex}	SIE error enable (rw)	usb_err_enb
	{bts, own, dma, bto, dfn8, crc16, crc5, pid}	
b084 _{hex}	SIE status (ro)	usb_stat
	{endp[3:0], in, odd, 0, 0}	
b085 _{hex}	SIE control (rw)	usb_ctl
	{5'b0, resume, odd_rst, usb_en}	
b086 _{hex}	SIE address (rw)	usb_addr
	{1'b0, addr[6:0]}	
b087 _{hex}	SIE BDT page (rw)	usb_bdt_page
	for UACB this is a constant 'a0'	
b08c _{hex}	SIE Micronas control register (rw)	usb_sie_control
	bit7:4] current token (ro)	
	bit[3:2] setting for usb_pre_bus_lock duration (rw)	
	00 : early buslock only for ISO IN tokens 01 : very early buslock only for ISO IN tokens (2 cycles earlier than "early") 10 : early buslock for every IN and OUT tokens 11 : very early buslock for all ISO IN and ISO OUT tokens, early buslock for non-ISO IN and OUT tokens	
	bit[1] = 1: enable new sync detection circuitry built into DPLL	
	bit[0] = 1: enable SOF fly wheel	
b08d _{hex}	SIE micronas status register (ro)	usb_sie_status
	bit[4] current endpoint	
	bit[3] isochronous endpoint	
	bit[2] own	
	bit[1] endpoint rx odd	
	bit[0] endpoint tx odd	
b08e _{hex}	SIE micronas configuration register (rw)	usb_sie_config
	bit7:4] not defined, set to zero	
	bit[3] = 1: don't stall after 'BDT status' - default is 'stall all non-SETUP after status'	
	bit[2] = 1: stall 'DATA0 status' - default is dont stall	
	bit[1] = 1: disable 'bdt_stall' - default is enable	
	bit[0] = 1: 'crc16_err_set' doesn't break the rx transfer	

UAC 357xB

Table 10–3: USB Serial Engine Interface

Register Address	Function	Name
b090 _{hex}	SIE enpoint 0 control register (rw)	usb_ep0_ctl
	bit[7:6] reserved	
	bit[5] $r = 1$: new SETUP for even BDT, $w = 1$: reset this bit	
	bit[4] $r = 1$: new SETUP for odd BDT, $w = 1$: reset this bit	
	bit[3] = 1: enable OUT transactions for this endpoint	
	bit[2] = 1: enable IN transactions for this endpoint	
	bit[1] = 1: stall this endpoint	
	bit[0] = 1: enable handshake for this endpoint	
b09x _{hex}	SIE enpoint x (x = 17) control register (rw)	usb_epx_ctl
	bit[7] = 1: disable buffer toggling for this endpoint	
	bit[6:5] reserved	
	bit[5] = 1: isochronous EP	
	bit[3] = 1: enable OUT transactions for this endpoint	
	bit[2] = 1: enable IN transactions for this endpoint	
	bit[1] = 1: stall this endpoint	
	bit[0] = 1: enable handshake for this endpoint	

10.5. General Purpose IO Registers / Test Bus IF

Table 10–4: General Purpose IO Registers / Test Bus I	l Purpose IO Registers / Test Bus IF
---	--------------------------------------

Function	Name
test data / GPO[7:0] (rw)	gpo_low
read/write to the output register, to see data at the pins the output direction must be set.	
test addr_low / { GPO[11:8] , GPI[11:8] } (rw)	gpio_hi
read from the GPIO pins / write to the output register, to see data at the pins the output direction must be set.	
test addr_high / GPI[7:0] (ro)	gpi_low
read the data at the GPIO pins	
test interrupt done (wo)	test_int_dne
writing to this location releases trdy, thus indicating that the test interrupt has been com- pletely serviced by the V8.	
GPIO parallel bus interface, access to GPIO address / data lines	
writes/reads directly to/from GPIO {paddr[3:0], pdata[7:0]}, see 'gpb_strobe' and 'gpb_rwq' (uses the same resources as the test interface so, again: be careful not to interfere with testmode)	
	test data / GPO[7:0] (rw) read/write to the output register, to see data at the pins the output direction must be set. test addr_low / { GPO[11:8] , GPI[11:8] } (rw) read from the GPIO pins / write to the output register, to see data at the pins the output direction must be set. test addr_high / GPI[7:0] (ro) read the data at the GPIO pins test interrupt done (wo) writing to this location releases trdy, thus indicating that the test interrupt has been completely serviced by the V8. GPIO parallel bus interface, access to GPIO address / data lines writes/reads directly to/from GPIO {paddr[3:0], pdata[7:0]}, see 'gpb_strobe' and 'gpb_rwq' (uses the same resources as the test interface so, again: be careful not to inter-

10.6. Application specific registers

The following Table shows write only hardware register of the UAC357xB. Register shadows are kept in the V8 RAM and are cyclically written to the hardware register by the processor.

Register Address	Function		Name	
SOFTRESETS				
b04e _{hex}	Software-l	Reset (Reset: 0)	V8W_SOFTRES	
	bit[7:2]	reserved, should be set to zero		
	bit[1]	dfpres : DSP reset 0 : normal mode 1 : permanent reset		
	bit[0]	por : Processor reset 0 : normal mode 1 : reset of DSP and V8		
MAIN CO	NTROL		1	
b04f _{hex}	Shadow: V	n (Reset: 10 _{hex}) (8_APP_REG_SHADOW= a180 _{hex} er is not updated by the processor	V8W_APP	
	bit[7]	i2sxt :source select of USB streaming interface 0 : V8 uses USB-I ² S-Interface (usbwso/usbclk) 1 : DSP I ² S-output-interface (usbwso/usbclk)		
	bit[6]	spden :SusPenDENable, 0 : normal state 1 : enables the suspend mode logic		
		Note: If this bit is set, the suspend mode is entered when the synthe- sis-part activates its "suspd"-wire The bit can be reread as bit[6] of the status register V8RSTAT. The bit is not resetted during suspend.		
	bit[5]	resxwu :reset external-wakup-flag (=bit[5] of V8W_STAT) 0 : normal state 1 : reset		
		Note: A LOW-state at the UACB-pin SEN sets an internal flip-flop, meaning an "external wakup request". This flip-flop can be resetted by setting the "resxwu"-bit. The bit is not resetted during suspend.		
	bit[4:3]	xdfreq : set XDFP frequency (version 0201 and higher) 00 : 72MHz 01 : 48MHz 10 : 36MHz (default after reset) 11 : 24MHz		
	bit[2]	sofbyp : SOF bypass 0 : SOF from synthesis 1 : SOF comes from SOF-Pad		
	bit[1:0]	mclksel : freq of pin "mclk" 00 : 18 MHz 01 : 24 MHz 10 : 36 MHz 11 : 48 kHz-IRQ (debug & test)		

Register Address	Function		Name
b05b _{hex}	Analog Control (Reset: c0 _{hex}) Shadow: V8_ANCTR_SHADOW= a181 _{hex}		V8W_ANCTR
	bit[7]	outlron : 0 : disable headphone opamp 1 : enable headphone opamp, force sref to on state (default)	
	bit[6]	srefon : 0 : sref off 1 : sref on (default)	
	bit[5]	filton : 0 : disable filter opamp 1 : enable filter opamp	
	bit[4]	reserved, must be set to zero	
	bit[3]	Internal reset enable	
	bit[2]	Pseudo differential output mode	
	bit[1]	Common output mode	
	bit[0]	setagn : set voltage of sref 0 : 1.725V 1 : 2.3V	
I/O-PIN C	ONTROL		
b050 _{hex}	I/O-Contr Shadow: V	rol (Reset: 0) /8W_IO_SHADOW= a18a _{hex}	V8W_IO
	0 : input/tr 1 : output	ristate	
	bit[7]	strbdrv :pin "strb"	
	bit[6]	rddrv :pin "rd"	
	bit[5]	usbddrv :pin "usbdat"	
	bit[4]	usbeldrv :pin "usbelk"	
	bit[3]	vbusdrv :pin "vbus"	
	bit[2]	clidrv :pin "cli"	
	bit[1]	wsidrv :pin "wsi"	
	bit[0]	daidrv :pin "dai"	

Register Address	Function		Name
b057 _{hex}		ol2 (Reset: 0f _{hex}) 8W_IO2_SHADOW= a18b _{hex}	V8W_IO2
	0: input/tris 1: output	state	
	bit[7]	melkdrv :pin "melk"	
	bit[6]	daodrv :pin "dao"	
	bit[5]	usbwsdrv :pin "usbws"	
	bit[4]	sendrv :pin "sen"	
	bit[3]	vbuspd: enables PULLDOWN of pin VBUS 0 : pulldown disabled 1 : pulldown enabled (default)	
	bit[2]	trdydrv :pin "trdy"	
	bit[1]	sofdrv :pin "sof"	
	bit[0]	suspdrv :pin "suspend"	
	Note: this i	register is only reset by the RESQ-pin (NOT during suspend mode)	
b058 _{hex}	GPIO-Control (Reset: 0) Shadow: GPIO_CONFIG_HI_SHADOW= a185 _{hex}		V8W_PIO2
	bit[7:4]	not used	
	bit[4:0]	gpiohidrv : configure direction of gpio[11:8]-pins 0 : input / tristate 1 : output	
b051 _{hex}	GPIO-Con Shadow: G	ntrol (Reset: 0) GPIO_CONFIG_LO_SHADOW= a184 _{hex}	V8W_PIO
	bit[7:0]	gpiodrv : configure direction of gpio[7:0]-pins 0 : input / tristate 1 : output	
b055 _{hex}	GPIO[7:0] Shadow: G	-Driver strength (Reset: 0) PIO_PADSTRENGTH_LO_SHADOW= a188 _{hex}	V8W_PS
	bit[7:0]	gpio : set pad driver strength of gpio[7:0]-pins 0 : weak 1 : strong	
b056 _{hex}	DriverStre Shadow: G	ength (Reset: 0) PIO_PADSTRENGTH_HI_SHADOW= a189 _{hex}	V8W_PS2
	pad-strengt	h of gpio[11:8] and other pins 0 : weak 1 : strong	
	bit[7]	i2ss : driver strengths of the pins dao, dai, wsi, cli	
	bit[6]	usbs : driver strengths of the pins usbwso,usbclk,usbdat	
	bit[5]	sofs : driver strengths of the pins sof, sen, suspendq, trdyI	
	bit[4]	strbs : driver strengths of the pins strb,rd	
	bit[3:0]	gpiohi : driver strengths of the gpio[11:8]	

Register Address	Function		Name
b059 _{hex}		Control (Reset: ff _{hex}) PIO_PULLDOWN_LO_SHADOW= a186 _{hex}	V8W_PDEN
	bit[7:0]	gpiolo : configure pulldowns of gpio[7:0]-pins 0 : no pulldown 1 : pulldown	
b05a _{hex}		Control of GPIO[11:8] and other pins (Reset: ff _{hex}) PIO_PULLDOWN_HI_SHADOW= a187 _{he}	V8W_PDEN2
	bit[7]	mclk : enable/disable pulldown of pin mclk	
	bit[6]	dao : enable/disable pulldown of pin dao	
	bit[5]	usbif : enable/disable pulldown of usb serial interface (pins usbdat, usbws and usbclk)	
	bit[4]	pif : enable/disable pulldown of parallel interface (pins strb and rd)	
	bit[3:0]	gpiohi : enable/disable pulldown of gpio[11:8]	
	Note: this r	egister is only resetted by RESQ-pin (NOT during suspend!)	
b052 _{hex}	Analog vol	ume delay adjust (Reset: 35dez)	V8W_AVDLY
		er sets the time, after which the analog DAC-volume values, which are the XDFP, are applied to the DAC volume circuitry.	
	bit[7:0]	avdly : analog-delay-adjustion, reset = 35 (2.9us)	
		Hz-steps = 83.3 ns a value of avdly=20 delays the volume by 20*83.3ns= 1666ns= 1.6us	

Register Address	Function		Name
b078 _{hex}	Voltage re	egulators (Reset: 00 _{hex})	V8W_VOLTREG
	Properties of digital voltage regulator(s)		
	bit[7]	bv5v : analog-PA 0 : 3.5V 1 : voltage regulator bridged (analog at 5V=extern voltage)	
	bit[6]	unused (0101-0201: av5v : analog-part 03.5V 1bridged)	
	bit[5]	v85v : V8 voltage regulator 0 : 3.75V 1 : v8-voltage regulator bridged (v8 at 5V=extern voltage)	
	bit[4]	v8poff : v8-voltage regulator 0 : enable 1 : disable	
	bit[3]	x5v : DSP voltage regulator 0 : 3.75V 1 : voltage regulator bridged (DSP at 5V=extern voltage)	
	bit[2]	xpoff : DSP voltage regulator 0 : enable 1 : disable (DSP at 0V)	
	bit[1:0]	voltage : DSP/V8-voltage 00 : 3.75V 01 : 3.5V 10 : 3.3V 11 : 3V	

10.7. DSP EMU-control registers

Table 10–6: V8 DSP-EMU Write Registers

Register Address	Function	Name
DSP-EMU	CONTROL REGISTERS	
b073 _{hex}	EMU-RAM data high (Reset: 0)	V8W_EDHI
	use this register to fill the (external) XDFP-emu-ram	
	bit[7:0] data : xdfp opcode [23:16]	
b074 _{hex}	EMU-RAM data middle(Reset: 0)	V8W_EDMD
	use this register to fill the (external) XDFP-emu-ram	
	bit[7:0] data : xdfp opcode [15:8]	
b075 _{hex}	EMU-RAM data low(Reset: 0)	V8W_EDLO
	use this register to fill the (external) XDFP-emu-ram	
	bit[7:0] data : xdfp opcode [7:0]	
b076 _{hex}	EMU-RAM configuration / EMU-RAM address high-byte (Reset: 10 _{hex})	V8W_EAHI
	use this register to define the address of the (external) XDFP-emu-ram that should be filled with the data in {V8W_EDHI,V8W_EDMID,V8W_EDLO} and to configure the emu-interface bit[7:7] rd; //0 "normal" EMU mode 1read back the external ram //activates the data line drivers! bit[6:6] emuon; //1XDFP uses ext. EMU-ram 0XDFP uses its internal rom bit[5:5] eadrv; //1adress-lines to external RAM are driven // 0adress-lines are tristate bit[4:4] clkdrv; //1dfp-clock driven to Pin EMUCLK //0Pin EMUCLK is tristate	
	bit[3:0] adrhi : emu-ram address[11:8]	
b077 _{hex}	EMU-RAM address low-byte (Reset: 0)	V8W_EALO
	use this register to define the address of the (external) XDFP-emu-ram that should be filled with the data in {V8W_EDHI,V8W_EDMID,V8W_EDLO}	
	bit[7:0] adrlo : emu-ram address[7:0]	

Table 10–7: V8 DSP-EMU Read/Write Registers

Register Address	Function	Name
DSP EMU	CONTROL REGISTERS	
b06c _{hex}	Read back XDFP emu-data, high-byte	V8R_EDHI
	bit[7:0]data: contains bit[23:16] of the selected emu-ram address	
b06d _{hex}	Read back XDFP emu-data, mid-byte	V8R_EDMDI
	bit[7:0]data: contains bit[15:8] of the selected emu-ram address	
b06e _{hex}	Read back XDFP emu-data, low-byte	V8R_EDLO
	bit[7:0]data: contains bit[7:0] of the selected emu-ram address	

11. Glossary

lower ROM: 8k Program ROM form 0000 to 1FFF. Can be shadowed by 8k EMU-ROM

BDT - Buffer Descriptor Table

bootloader: routine in upper rom – handles firmware-startup and code&data download from external EEPROM.

Descriptor:Contains all information of the USB-characteristic. Transferrred to host during enumeration.

FU - Feature Unit

IT - Input Terminal

MU – Mixer Unit

OT - Output Terminal

Section1:256bytes data area. Contains default settings for hardware and audio processing and programmable descriptor components.

Shadow RAM:8k – internal RAM. Shadows the lower ROM. Used for downloading new firmware or emulating firmware before generating a progam ROM.

SU - Selector Unit

upper ROM:4k – Program ROM from 2000 to 2FFF. Can NOT be shadowed

V8 - name of the internal microcontroller

XDFP - name of the internal DSP - core

12. Application Note History

1. Application Note Software: "UAC 357xB Programmer's Guide", ..., 6251-5XX-XAS. First release of the application note software.

Micronas GmbH Hans-Bunte-Strasse 19 D-79108 Freiburg (Germany) P.O. Box 840 D-79008 Freiburg (Germany) Tel. +49-761-517-0 Fax +49-761-517-2174 E-mail: docservice@micronas.com Internet: www.micronas.com

Printed in Germany Order No. 6251-5XX-XAS All information and data contained in this document are without any commitment, are not to be considered as an offer for conclusion of a contract, nor shall they be construed as to create any liability. Any new issue of this data sheet invalidates previous issues. Product availability and delivery are exclusively subject to our respective order confirmation form; the same applies to orders based on development samples delivered. By this publication, Micronas GmbH does not assume responsibility for patent infringements or other rights of third parties which may result from its use.

Further, Micronas GmbH reserves the right to revise this publication and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

No part of this publication may be reproduced, photocopied, stored on a retrieval system, or transmitted without the express written consent of Micronas GmbH.