
APPLICATION NOTE SOFTWARE

Edition ...
6251-5XX-XAS

UAC 357xB
Programmer’s Guide

UAC 357xB APPLICATION NOTE SOFTWARE

2 ...; 6251-xxx-1AS Micronas

Contents

Page Section Title

4 1. Introduction

5 2. V8 Firmware Source Files

7 3. Bootloader Concept
7 3.1. External EEPROM
7 3.1.1. Introduction
7 3.1.2. EEPROM Types
8 3.1.3. EEPROM bootstrap options
9 3.1.4. EEPROM content
9 3.1.4.1. Header
10 3.1.5. EEPROM Configuration Section
10 3.1.5.1. I/O and HID
16 3.1.5.2. The Section1 Concept – data_sec1.asm
17 3.1.6. External EEPROM
18 3.1.6.1. Content of the external EEPROM
19 3.1.7. The Plug-in Concept

20 4. USB Descriptor
20 4.1. USB_DESCRIPTOR.ASM
20 4.1.1. Device Descriptor (Chapter 9.6.1)
20 4.1.2. Configuration Descriptor (Chapter 9.6.2)
20 4.1.3. Interface Descriptors (Chapter 9.6.3)

23 5. Handling of Class Specific Requests
23 5.1. Introduction
23 5.2. Audio-Control Handling
25 5.2.1. GET-Requests and SET-Requests.
29 5.2.2. Examples
29 5.2.2.1. How to add new Features and Requests
33 5.3. DSP Control
35 5.4. Sample Rate Control

38 6. GPIO Handling
40 6.1. Memory Mapped Mode
40 6.2. Debouncing
41 6.3. Reporting the Keycode
41 6.4. Toggle Keys
42 6.5. GPIO port configurations.
43 6.6. The parallel interface mechanism (RD/STRB)

44 7. Alternate Downstream ISO Endpoint
44 7.1. How to use the alternative downstream ISO-Endpoint

Contents, continued

Page Section Title

APPLICATION NOTE SOFTWARE UAC 357xB

Micronas ...; 6251-xxx-1AS 3

45 8. Appendex 1: SDK

46 9. Appendix 2: DSP Firmware
46 9.1. Overview
47 9.2. User Registers

57 10. Appendix 3: V8 Controller Registers
57 10.1. Overview
58 10.2. V8 Memory Layout
59 10.3. V8 Peripherals & Control & Status Registers
59 10.3.1. V8 General & Interface Registers
64 10.4. USB Serial Engine Interface
66 10.5. General Purpose IO Registers / Test Bus IF
67 10.6. Application specific registers
73 10.7. DSP EMU-control registers

75 11. Glossary

76 12. Application Note History

UAC 357xB APPLICATION NOTE SOFTWARE

4 ...; 6251-xxx-1AS Micronas

Programmer’s Guide

1. Introduction

The basic information on functionality and electrical charac-
teristics is given in the data sheet UAC 357xB. This is based
on the Micronas standard firmware or SDK firmware, which
is a good example for a feature set needed in a general pur-
pose USB audio codec.

The flexibility of the device, however, allows customization
to match a specific application exactly. This is achieved by
the use of a programmable internal microcontroller and sup-
ply of a software development kit (SDK).

The purpose of this paper is to provide all information
which is needed to customize the UAC357xy firmware.

Beginning with general information on the SDK environ-
ment and usage, an explanation of the standard firmware
structure is given. This is followed by the detailed descrip-
tion of all functions which may be modified on customiza-
tion, like default values, descriptors and all audio class
related items. This tutorial is completed with register lists
for both V8-microcontroller and DSP.

Information on the USB chapter 9 handling is not given
because this routines are strictly tied to the hardware of the
chip and it is not recommended to modify this blocks. It is
also not possible to modify the DSP firmware.

APPLICATION NOTE SOFTWARE UAC 357xB

Micronas ...; 6251-xxx-1AS 5

2. V8 Firmware Source Files

The Micronas-Standard-Firmware package consists of the
following files:

The following diagram displays how all these files are
related to each other:

Table 2–1: Source Files

File Name Description

data_fixed_ram.asm RAM variables with fixed
address

data_sec1.asm Section1 variables

dsp_control.asm controls the audio func-
tions in the DSP

emu_flash.asm structure for the I2C-
EEPROM

gpio_control.asm GPIO communicaton and
the HID

i2c_drv.asm I2C driver

iso_down_as1.asm alternate setting 1 for
downstream

iso_down_as2.asm alternate setting 2 for
downstream

iso_down_as3.asm alternate setting 3 for
downstream

iso_up_as1.asm alternate setting 1 for
upstream

iso_up_as2.asm alternate setting 2 for
upstream

iso_up_as3.asm alternate setting 3 for
upstream

macros.asm v8 macros

main.asm main program – includes
all other .asm`s

main_config.asm memory map of the V8
address space

main_include.asm wakeup routines, initialisa-
tions

main_upper_rom.asm content of upper rom space

timer_drv.asm Timer driver

usb_appl_interface.asm application specific chap-
ter 9 stuff

usb_audio_ctl.asm handles audio class
requests

usb_audio_ctl_include.as
m

routines and tables for
audio class requests

usb_ch9.asm application independant
chapter 9 handling

usb_class.asm branch handler to class
spec. requests

usb_descriptor_xp.asm Standard Descriptor
(„WINXP-proved“)

usb_hid_ctl.asm empty – handles hid class
requests

usb_vend_class.asm empty – handles vendor
class requests

usb_vendor.asm handles vendor spec chap-
ter 9 requests

Table 2–1: Source Files

File Name Description

UAC 357xB APPLICATION NOTE SOFTWARE

6 ...; 6251-xxx-1AS Micronas

Fig. 2–1: Firmware overview

usb_ch9.asm

main.asm
main_config.asm

main_include.asm

usb_class.asm usb_vendor.asmusb_appl_interface

usb_hid_ctl.asmusb_audio_ctl.asm
usb_audio_ctl_include.asm usb_vendor_class.asm

dsp_control.asm gpio_control.asm

usb_descriptor_xp.asm
iso_down_as1.asm

iso_down_as2.asm
iso_down_as3

.asm iso_u
p_as1.asm
iso_up_as2.asm
iso_up_as3.asm

main_upper_rom.asm

data_fixed_ram.asm

data_sec1.asm
i2c_drv.asm

timer_drv.asm

APPLICATION NOTE SOFTWARE UAC 357xB

Micronas ...; 6251-xxx-1AS 7

3. Bootloader Concept

-> von W. Platzer bis KW 25

3.1. External EEPROM

3.1.1. Introduction

The UAC 357xB can load its configuration and plug-ins out
of an external I2C EEPROM.

3.1.2. EEPROM Types

The UAC 357xB can have different EEPROMS connected
to the I2C bus. The UAC 357xB is working as an I2C bus
master at this point in time. Depending on EEPROM size
the EEPROM can hold different content (see Table 3–1)

Table 3–1: Supported I2C EEPROM types

EEPROM size Purpose

2kbit Configuration only

4-32kbit Configuration
Plug-in software

64kbit Configuration
On reset loadable firmware

128kbit Configuration
On reset loadable firmware
Plug-in software

UAC 357xB APPLICATION NOTE SOFTWARE

8 ...; 6251-xxx-1AS Micronas

3.1.3. EEPROM bootstrap options

The EEPROM configuration can be set with bootstrap
options at the pins USBDAT, USBCLK and USBWSO (see
Table 3–2).

Table 3–2:

USBWSO USBDAT USBCLK Address
Subaddress

Purpose

1 1 don’t care internal ROM only
I2C master disabled

1 0 don’t care 0x50
1byte subaddressing

Configuration data
Plug-in Software
100kHz I2C master

0 1 0 0x51
2byte subaddressing

Configuration data
On reset loadable firmware
Plug-in software
400kHz I2C

0 1 1 0x52
2byte subaddressing

Configuration data
On reset loadable firmware
Plug-in software
400kHz I2C

0 0 0 0x51
2byte subaddressing

Configuration data
On reset loadable firmware
Plug-in software
100kHz I2C

0 0 1 0x52
2byte subaddressing

Configuration data
On reset loadable firmware
Plug-in software
100kHz I2C

APPLICATION NOTE SOFTWARE UAC 357xB

Micronas ...; 6251-xxx-1AS 9

3.1.4. EEPROM content

3.1.4.1. Header

The first byte in the serial EEPROM describes the
EEPROM content (see Table 3–3).

This allows to have 3 different sections in the EEPROM.
The address and length of all this sections are stored in the
following locations in the EEPROM.

Table 3–3: EEPROM configuration byte

bit function

bit[7] verify checksum

bit[3..6] must be set to 0x00

bit[2] new firmware

bit[1] plug-in

bit[0] UAC357xB configuration

UAC 357xB APPLICATION NOTE SOFTWARE

10 ...; 6251-xxx-1AS Micronas

3.1.5. EEPROM Configuration Section

3.1.5.1. I/O and HID

Table 3–4: EEPROM configuration section

Address Function

0x0000 EEPROM configuration

0x0001 / 0x0002 Configuration section length
High Byte / Low Byte

0x0003 / 0x0004 Configuration section address
High Byte / Low Byte

0x0005 / 0x0006 Plug-in section length
High Byte / Low Byte

0x0007 / 0x0008 Plug-in section address
High Byte / Low Byte

0x0009 / 0x000A Firmware section length
High Byte / Low Byte

0x000B / 0x000C Firmware section address
High Byte / Low Byte

Address Function Name

0x00 MIN_PB_VOLUME

bit [7..0] volume of the DAC output after configuration:
0x00 0dB
0xEC -20dB

gets overwritten by Set_Volume requests later on

MIN_PB_VOLUME

0x01 reserved 2

bit [7..0] reserved must be set to 0x00

Reserved_2

0x02 V8_CTL_DEFAULT

bit [7]set to 0 for GPIO[11] standard output
set to 1 for GPIO[11] enable PWM output

bit [6..0] reserved must be set to 0x08

V8_CTL_DEFAULT

0x03 reserved 3

bit [7..0] reserved must be set to 0x01

Reserved_3

0x04 reserved 4

bit [7..0] reserved must be set to 0x09

Reserved_4

APPLICATION NOTE SOFTWARE UAC 357xB

Micronas ...; 6251-xxx-1AS 11

0x05 reserved 5

bit [7..0] reserved must be set to 0x05

Reserved_5

0x06 reserved 6

bit [7..0] reserved must be set to 0x0b

Reserved_6

0x07 reserved 7

bit [7..0] reserved must be set to 0x04

Reserved_7

0x08 Miscellaneous configuration 1

bit [7] 0: µC uses USBWSO, USBDAT, USBCLK interface
1: DSP I²S out uses USBWSO, USBDAT, USBCLK interface

bit [6..2] reserved must be set to MSB 01000 LSB

bit [1..0] selects audio oversampling clock frequency pin MCLK
00: 36.8MHz
01: 24.576MHz
10: 18.432MHz
11: do not use

Config_Misc_1

0x09 Analog Control

bit[7] outlron :
0 : disable headphone opamp
1 : enable headphone opamp, force sref to on state (default)

bit[6] srefon :
0 : sref off
1 : sref on (default)

bit[5] filton :
0 : disable filter opamp
1 : enable filter opamp

bit[4] reserved, must be set to zero

bit[3] Internal reset enable

bit[2] Pseudo differential output mode

bit[1] Common output mode

bit[0] setagn : set voltage of sref
0 : 1.725V
1 : 2.3V

ANCTR

0x0a GPIO[7..0] direction

0: input
1: output

bit [7..0] set GPIO [7..0] to input/output

PIO

0x0b GPIO[11..8] direction

bit [7..4] reserved must be set to MSB 0000 LSB

0: input
1: output

bit [3..0] set GPIO [11..8] to input/output

PIO2

Address Function Name

UAC 357xB APPLICATION NOTE SOFTWARE

12 ...; 6251-xxx-1AS Micronas

0x0c GPIO[7..0] pulldown enable

0: disable pull-down
1: enable pull-down

bit [7..0] GPIO [7..0] pull-down resistor enable / disable

PDEN

0x0d GPIO[11..8] pull-down enable

bit [7..4] reserved must be set to MSB 0000 LSB

0: disable pull-down
1: enable pull-down

bit [3..0] GPIO [11..8] pull-down resistor enable / disable

PDEN2

0x0e GPIO[7..0] driver strength

0: weak
1: strong

bit [7..0] GPIO [7..0] driver strength weak / strong

PS

0x0f GPIO[11..8] driver strength

0: weak
1: strong

bit [7] Pins: DAO, DAI, WSI, CLI driver strength weak / strong

bit [6] Pins: USBWSO, USBCLK, USBDAT driver strength weak /
strong

bit [5] Pins: SOF, SEN, SUSPENDQ, TRDY driver strength weak /
strong

bit [4] Pins: STRB, RD DRIVER STRENGTH weak / strong

bit [3..0] GPIO [11..8] driver strength weak / strong

PS2

0x10 IO Config 1
0 : input / tristate
1 : output

bit [7] Direction of pin: STRB

bit [6] Direction of pin: RD

bit [5] Direction of pin: USBDAT

bit [4] Direction of pin: USBCLK

bit [3] reserved set to 0:

bit [2] Direction of pin: CLI

bit [1] Direction of pin: WSI

bit [0] Direction of pin: DAI

IO_CONFIG_1

Address Function Name

APPLICATION NOTE SOFTWARE UAC 357xB

Micronas ...; 6251-xxx-1AS 13

0x11 IO Config 2
0 : input / tristate
1 : output

bit [7] Direction of pin: MCLK

bit [6] Direction of pin: DAO

bit [5] Direction of pin: USBWS

bit [4] Direction of pin: SEN

0: disable pull-down resistor
1: enable pull-down resistor

bit [3] enable pull-down resistor of pin VBUS:

0 : input / tristate
1 : output

bit [2] Direction of pin: TRDY

bit [1] Direction of pin: SOF

bit [0] Direction of pin: SUSPENDQ

IO_CONFIG_2

0x12 reserved 8
bit [7:0] reserved set to 0xa7

reserved_8

0x13 reserved 9
bit [7:0] reserved set to 0x91

reserved_9

0x14 Key timer
Timer value for debouncing of the HID keys

bit [7:0] set to a value between 0x01 and 0xff; default 0x7f

reserved_8

0x15 -
0x44

equalizer coefficients
coefficients for the 5-band parametric equalizer

0x45 -
0x47

I²S configuration
for a detailed description see register description of the DSP

i2S_CONFIG

0x48 -
0x49

I²S record selection
for a detailed description see register description of the DSP

i2S_CONFIG

0x4A -
0x50

Bass Boost On Setting
Micronas Bass settings for Bass Boost On
for a detailed description see Micronas Bass for UAC357xB Application note

BassBoostOn

0x51 -
0x57

Bass Boost Off Setting
Micronas Bass settings for Bass Boost On
for a detailed description see Micronas Bass for UAC357xB Application note

BassBoostOff

0x58 AGC decay
sets the AGC decay time for the DAC path. For more information see the the regis-
ter description of the DSP

AgcDecay

0x59 DSP mode selection
selects the required mode for the DSP. Full feature mode(72MHz) or reduced fea-
ture mode(48Mhz).

0: Full feature mode(72MHz)
1: Reduced feature mode(48MHz

DspMode

Address Function Name

UAC 357xB APPLICATION NOTE SOFTWARE

14 ...; 6251-xxx-1AS Micronas

0x5a DAC on/off
Turns the required bit [7:2]reserved should be set to 0

bit [1] reserved

bit [0] 0: Stereo DAC Off
1: Stereo DAC On

AgcDecay

0x5b reserved 10
reserved set to 0x00

reserved_10

0x5c -
0x5d

Vendor ID

the USB vendor ID. e.g. Micronas has 0x074d

byte order low-byte / high-byte

VendorId

0x5e -
0x5f

Product ID

the USB product ID. e.g. UAC3576B has 0x3576

byte order low-byte / high-byte

ProductId

0x60 -
0x61

Device release code

BCD number!!: use only binary coded decimals here. Using hex numbers will
confuse hosts.

order low-byte / high-byte

bcdDevice

0x62 iManufacture
index number of the manufacture string in the EEPROM. valid numbers 0..3

0: no string in the table

1,2,3: string number in the table

iManufacture

0x63 iProduct
index number of the product string in the EEPROM. valid numbers 0..3

0: no string in the table

1,2,3: string number in the table

iProduct

0x64 iSerialNumber
index number of the serial number string in the EEPROM. valid numbers 0..3

0: no string in the table

1,2,3: string number in the table

iserial number

0x65 iConfig
index number of the configuration string in the EEPROM. valid numbers 0..3

0: no string in the table

1,2,3: string number in the table

iConfig

0x66 bmAttributes
reserved set to 0x00

bmAttributes

0x67 Max power
reserved set to 0x00

MaxPower

0x68 Interval
reserved set to 0x00

bInterval

Address Function Name

APPLICATION NOTE SOFTWARE UAC 357xB

Micronas ...; 6251-xxx-1AS 15

0x69 -
0x6a

Pointer string 0
value: 0xa771

pString0

0x6b -
0x6c

Pointer string 1
value: 0xa775

pString1

0x6d -
0x6e

Pointer string 2
value: pString1 + *pString1

pString2

0x6f -
0x70

Pointer string 3
value: pString1 + *pString1 + *pString2

pString3

0x71 -
0x74

String 0
byte 0: 0x04

byte 1: 0x03

byte 1: 0x09

byte 1: 0x04

String0

0x75 -
0xXX

Strings 1..3
all strings are currently ASCII. No Unicode support.

String format:

byte 0: length of ASCII string + 2

byte 1: 0x03

byte 2..n ASCII string

String1

String2

String3

Address Function Name

UAC 357xB APPLICATION NOTE SOFTWARE

16 ...; 6251-xxx-1AS Micronas

3.1.5.2. The Section1 Concept – data_sec1.asm

The Section1 is the first section of an optionally attached
external EEPROM and is used to hold all variables and
default values that may be different from one application to
the other, based on the same internal ROM-firmware. The
standard firmware handles 256-bytes Section1 data.

All data are defined in data_sec1.asm. All data names here
have the prefix „SED_DEFAULT_ „

(originally an sed-script was used to handle this file).

This file is included at the position 0x2E00 of the upper-
ROM and is the default Section1 of a ROM firmware. The
assembler script generates the file „data_sec1ram.asm“
which is an mirror image of the Section1 in the RAM area at

0xA700 by just inserting placeholders using the same names
apart from the SED_DEAULT prefix. The scripts also gen-
erates the file „emu_section1.asm“ which is a hex-represen-
tation of the data_sec1.asm. This file is then included in the
„emu_flash.asm“. This serves as the default Section1 code
in the external EEPROM. So without changing ROM firm-
ware the default setting and the descriptor IDs and strings
can be modified.

Note: It is not allowed to change the length or the order-
ing of the Section1 data in the EEPROM. Length
and ordering must be identical with that of the
upper ROM Section1. Descriptor strings are not
affected by the length-restriction as long as the
256-byte limit is not violated.

Fig. 3–1:

Note: The bootloader (see „The Bootloader Concept“)
loads the data_sec1.asm from the upper ROM into
the placeholder-RAM area and overwrites this area
with Section1 - data coming from the external
EEPROM (if an EEPROM with Section1 data is con-
nected.

The Section1 concept is targeted for a device without
shadow RAM. Applications based on devices with Shadow
RAM can keep all Section1 data as part of the emulatable
lower ROM, of course.

R O M R A M E E P R O M
0 0 0 0

1 F F F

l o w e r R O M

u p p e r R O M
2 E 0 0

d a ta _ s e c1 . a s m

A 7 0 0

A 0 0 0 1 7 b y t e s - H e a d e r

d a t a _ s e c 1 r a m . a s m

e m u _ s e c t io n 1 . a s m

2 F F F

APPLICATION NOTE SOFTWARE UAC 357xB

Micronas ...; 6251-xxx-1AS 17

3.1.6. External EEPROM

The UAC 357xB is equipped with it’s own ROM including
the Micronas firmware necessary for operation.

Optionally, the IC can be operated with the followings oft
ware configurations:

1. Micronas firmware (internal ROM)

2. customer-specific firmware (external EEPROM)

3. Micronas firmware plus customer-specific plug-in code

4. Structure of the external EEPROM

The bootloader handles an external I2C-EEPROM with
automatic detection of presence and structure and download
of code and data from up to four sections.

The header byte tells the bootloader how the EEPROM is
structured and the sections are used as follows:

Section1: default data and programmable descriptor compo-
nents (see The Section1 Concept)

Section2: used for plug-ins; small pieces of code that extend
a given ROM firmware

Section3: contains the V8 code for the Shadow RAM

Section4: contains the XDFP code; the bootloader loads it
into the external DSP Emu-RAM

Table 3–5: Header Byte

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

1=test
checksum

0 0 0 1=Section4 1=Section3 1=Section2 1=Section1

UAC 357xB APPLICATION NOTE SOFTWARE

18 ...; 6251-xxx-1AS Micronas

3.1.6.1. Content of the external EEPROM

The checksum is an XOR over all bytes of a section the
address-offset of Section1 is 0x11 (17 Bytes Header)

Table 3–6:

Addr. Content Byte

0x00 length in bytes of Section1 + 1 for checksum High Byte

0x01 length in bytes of Section1 + 1 for checksum Low Byte

0x02 address-offset in bytes of Section1 related to addr 0000 High Byte

0x03 length in bytes of Section2 + 1 for checksum High Byte

0x04 length in bytes of Section2 + 1 for checksum Low Byte

0x05 address-offset in bytes of Section2 related to addr 0000 High Byte

0x06 length in bytes of Section3 + 1 for checksum High Byte

0x07 length in bytes of Section3 + 1 for checksum Low Byte

0x08 address-offset in bytes of Section3 related to addr 0000 High Byte

0x09 length in bytes of Section4 + 1 for checksum High Byte

0x0A length in bytes of Section4 + 1 for checksum Low Byte

0x0B address-offset in bytes of Section4 related to addr 0000 High Byte

0x0C address-offset in bytes of Section4 related to addr 0000 Low Byte

0x0D DATA of Section1 + 1 for checksum Header Byte

0x0E ...

0xxx DATA of Section2 + 1 for checksum Header Byte

0xxx ...

0xxx DATA of Section3 + 1 for checksum Header Byte

0xxx ...

0xxx DATA of Section4 + 1 for checksum Header Byte

0xxx ...

APPLICATION NOTE SOFTWARE UAC 357xB

Micronas ...; 6251-xxx-1AS 19

3.1.7. The Plug-in Concept

UAC 357xB APPLICATION NOTE SOFTWARE

20 ...; 6251-xxx-1AS Micronas

4. USB Descriptor

4.1. USB_DESCRIPTOR.ASM

This part of the source code covers all information that is
reported to the host upon enumeration. The „DESCRIP-
TOR“ provides a complete description of the USB-charac-
teristic. It is assumed that the reader is familiar with the
USB-basics and it is recommended to have the USB-SPEC
1.1 nearby because it is often referred to this paper. The fol-
lowing paragraphs explain the structure of the descriptor
and the functionality of the Micronas Standard Descriptor.

The descriptor is split into the following parts:

– Device Descriptor

– Configuration Descriptor

– Interface Descriptors

4.1.1. Device Descriptor (Chapter 9.6.1)
1here is the place to provide formal information of the
device like

– Manufacturer ID

– Product ID

– Release Numbers

– String Information

The Micronas Standard Descriptor keeps this kind of infor-
mation EEPROM programmable (->FE-concept, -
>Section1-concept). This, however, is important only when
the device works with ROM-Firmware and taking only few
programmable parts out of an external EEPROM.

4.1.2. Configuration Descriptor (Chapter 9.6.2)

Sometimes all but the device descriptor is called Configura-
tion Descriptor but the exact definition is given in chapter
9.6.2 of the spec. The important points here are:

– number of interfaces (Chapter 9.6.3, note: wrong number
here crashes all operating systems!)

– Attributes - defines self/bus-powered and remote wake-
up capability

– Maxpower in mA - this must be set in case of bus-pow-
ered mode

The attributes and the maxpower are programmable via
Section1.

The Micronas Standard Firmware uses the configuration
string for a time code information

It is string 3 (index=3), and the V8-assembler directive
„..datetime“ generates the timing information automatically.
This allows an easy check of the FW-version.

4.1.3. Interface Descriptors (Chapter 9.6.3)

All USB-functions require a USB interface. The Standard
Descriptor has 4 interfaces. This is coded as follows:

.equ bNumInterfaces4

.equ ISO_CONTROL_IFC_NR0

.equ ISO_DOWN_IFC_NR1

.equ ISO_UP_IFC_NR2

.equ HID_IFC_NR3

The ISO_CONTROL_IFC is a class specific descriptor
and describes the path of the up- and downstream audio sig-
nal to and from the DSP. Here we define whether the device
is an USB-Speaker, USB-Headset, or a USB soundcard for
example. We also define here, how the device appears in the
Windows mixer, for example if we have line-input or mic
input or both. The rules for defining this structures can be
found in the „Universal Serial Bus Device Class Definition
for Audio Devices“.

Note: The USB-Spec allows free combinations of input
units, feature units, selector units, mixer unit, output
units etc. A first serious restriction here, however, is
the Windows mixer, which must be observed, if the
device shall be shipped without additional drivers.
The WIN mixer is not flexible and requires a strict
scheme of devices working on the recording mixer
and devices working on the playback mixer. Also the
choice of features is limited here. For example: we
don’t have mute buttons for the recordings devices,
or how shall we switch on and off an AGC for the
mic-input? No way.

Apart from that, the WIN-mixer shows different perfor-
mance in different WIN-versions. The mixer WIN-ME is
nearly unusable.
The second restriction is the limited capability of the operat-
ing system in parsing this part of the descriptor due to a bad
implementation of the USB-Spec. This causes many blue-
screens or system hang-ups and requires try & error meth-
ods, because nobody can give a reliable answer here on how
the descriptor should look like. The Micronas Standard
Descriptor was tested on all WIN – operating systems and
on MAC 9.1.

The ISO_CONTROL interface reflects the following audio
path in the Micronas Standard Descriptor.

APPLICATION NOTE SOFTWARE UAC 357xB

Micronas ...; 6251-xxx-1AS 21

Fig. 4–1:

Its the basic configuration of an USB codec. The additional
(and already implemented) asynchronous I2S I/O features
are not reflected here.

Other more complex structures are possible, but then the
operating system eventually may not handle this and an
additional vendor specific driver and mixer tool may be
required.

The ISO_DOWN interface covers the audio-downstream
functionality. This interface has two alternate settings,
describing the audio formats, which are supported by the
chip. These are:

The properties of each alternate setting are defined in the

CS-Audio Streaming Interface Format. Here it is declared
that the chip handles continuos sampling rates. The range is
defined with:

;ISO-SAMPLING RANGE

.equ LOW_SAMPLE_FREQ 6400

.equ HI_SAMPLE_FRE48000

This range is identical for all ISO-interfaces. The upper limit
must never be exceeded.

Important also is the packet size which define the maximum
bytes per frame. It is recommended to slightly exceed the
theoretical value.

Example:16_BIT_STEREO at 48kHz require 48 x 2 x 2 =
192bytes

the value used in the descriptor is 200bytes

The following packet sizes should never be changed.

;PACKET SIZE

.equ 8_BIT_MONO 50

.equ 8_BIT_STEREO100

.equ 16_BIT_MONO100

.equ 16_BIT_STEREO200

.equ 24_BIT_MONO150

.equ 24_BIT_STEREO300

Note: The device is capable of handling 24bit downstream
word also. But the standard descriptor does not
declare this. The code for this (alternate setting 3),
however, is provided.

The downstream uses endpoint 1.

The ISO_UP interface covers the audio-upstream function-
ality. This interface has three alternate settings, describing
the audio formats, which are supported by the chip. These
are:

The upstream uses endpoint 4 (coded as 84 – IN endpoint)

I TL in e
I D 1 1

I TM i c
I D 1 0

F U

F U

V o lu m e

V o lu m e

 I D 3

I D 2

I TU S B
I D 1 2

F U

Vo l u me , M ut e ,
B a s s , Tre b le
B a s s Bo o s t
A G C

I D 1
OT

I D 1 4
D / A
P la y b a c k

F U

V o lu m e M u t e I D 6

U S B - U pO T
I D 1 3 Record

d i g it a l
1
2
3

S U 8

Alternate Setting 1 16 bit mono

Alternate Setting 2 16 bit stereo

Alternate Setting 1 08 bit mono

Alternate Setting 2 16 bit mono

Alternate Setting 3 16 bit stereo

UAC 357xB APPLICATION NOTE SOFTWARE

22 ...; 6251-xxx-1AS Micronas

The HID interface contains the HID endpoint 3 (coded as 83
– IN endpoint) and the REPORT Descriptor. The Standard
Descriptor assigns the following functions to the GPI-Ports:

The key codes for GPIO5..7 are also reported to the host,
but no HID-functions are assigned to this pins. This can be
used in a vendor specific driver to trigger additional func-
tions.

Important for the HID endpoint are:

– 0x0002;wMaxPacketSize

– .byte0xfe;bInterval

bInterval defines the polling interval in ms. This is a Section
1 variable (->FE-concept, ->Section1-concept).

Note: It is not recommended to change the MaxPacketSize
in the HID-endpoint, because this requires deep
familiarity with the TX-buffer handling.

More information on the HID handling can be found in the
description of gpio_control.asm.

GPI 0 Volume Up

GPI 2 Volume Down

GPI 3 Mute

GPI 4 Bass Boost

APPLICATION NOTE SOFTWARE UAC 357xB

Micronas ...; 6251-xxx-1AS 23

5. Handling of Class Specific Requests

5.1. Introduction

The UACB needs class specific requests to handle the USB
audio control. After an incoming request is identified as
class specific further processing is done in the
USB_CLASS_SETUP routine, located in usb_class.asm.

Here first it is checked if its an audio class request. This
happens in USB_AUDIO_CTL_START in the file
usb_audio_ctl.asm. If it is not identified here the same is
tried with USB_HID_CTL_START and
USB_VEND_CLAS_START but only audio-control and
sample rate-control is supported in the standard firmware

5.2. Audio-Control Handling (usb_audio_ctl.asm,
usb_audio_ctl_include.asm, dsp_control.asm)

It is recommended here to be familiar with the Universal
Serial Bus Device CLass Definition for Audio Devices
Specification, Release 1.0.

The number and kind of control request is strictly related to
the ISO_CONTROL_IFC descriptor. That means if the
descriptor is modified also the request handling needs to be
modified (especially if new features are introduced).

The standard firmware handles the following audio control
requests for feature units (FU), selector units (SU) and
mixer units (MU).

– FU1_MUTE_

– FU1_VOL_CH1

– FU1_VOL_CH2

– FU1_BASS

– FU1_TREBLE

– FU1_AGC

– FU1_BASSBOOST

– FU2_MUTE

– FU2_VOL

– FU3_MUTE

– FU3_VOL

– FU6_MUTE

– FU6_VOL

– SU7

– SU8

– MU9_IN1

– MU9_IN2

This was based on a descriptor which covered more func-
tionality than the current descriptor.

Fig. 5–1:

Note: Even this structure does not represent the complete
audio structure of the device. All I2S functionality is
not represented here and needs to be added in a
future version.

ITL ine
ID 1 0

ITM i c
ID 1 1 S U

ID 7F U

F U

V o lum e

V o lum e

ID2

ID3

IT

E P 1

U S B
ID 1 2

F U

V o lum e ID4 M U

ID 9

F U

Vo l u me ,M ute ,
B a ss ,Tre b le
B a ss Bo o st
A G C

ID 1

O T

ID 1 4
D /A

Pla yb a ck

S U

ID8

F U

V o lum e M u te ID 5

U S B- U pOT

ID1 3

R e co r d

vo r p a r. Eq . ab g r e ife n

“w h at y o u h e ar ”an a lo g

an a l og

dig it a l

d i gi t al

a n alo g +d i g ital

UAC 357xB APPLICATION NOTE SOFTWARE

24 ...; 6251-xxx-1AS Micronas

Fig. 5–2: Audio request handling

check
Requ.Type

check if SET-GET

Samplerate

Samplerate
Request

GET Request

AudioControl

Class_Return_Value=0

generate get_number

REQUEST

check if GET_CUR or
GET_MIN,MAX,RES

generate set_number

no match STALL

handle set_request data
phase

SET Request

GET_CUR

DSP Control

Class_Return_Value!=0

get_cur

no

handle get_request data
phase

yes

set_number found in
table "set_numbers"

get_number found in
table "set_numbers"

no match STALL

handle get_request data
phase

Class_Return_Value!=0

APPLICATION NOTE SOFTWARE UAC 357xB

Micronas ...; 6251-xxx-1AS 25

5.2.1. GET-Requests and SET-Requests.

The GET-requests are needed

1. to report the parameter range (MIN,MAX,RES) of the
units to the host.

This information is located in ROM-table
ROM_USB_MINMAXRES in
usb_audio_ctl_include.asm

ROM_USB_MINMAXRES:
ROM_USB_VOL_MIN_FU1_CH1: .rword 0xD700

ROM_USB_VOL_MAX_FU1_CH1: .rword 0x0000

ROM_USB_VOL_RES_FU1_CH1: .rword 0x0010

etc.

This, for example, tells the host that FU1 has an audio
range from –40dB to 0dB with a stepsize of 1dB.

All parameters here are coded with 2-bytes even if
only 1-byte is required. This simplifies programming

2. to report the current status (CUR) of the unit.

This information is located in RAM-table
USB_AUDIOCLASS_SET_CUR in
usb_audio_ctl_include.asm. The content of this table rep-
resents the current status of the audio parameters.

The CUR-parameters are not exactly identical with
the values which are transmitted to the DSP.In some
cases there must be a transformation first, to match
the requirements of the DSP - algorithm.

The SET requests are needed:

1. to set the CUR-parameters
This request modifies the RAM-table
USB_AUDIOCLASS_SET_CUR and accordingly trig-
gers the update of the DSP-parameters (dsp_control.asm)

2. to set the sampling rate for the ISO – upstream (endpoint
control operation)

The method used for decoding the request types is table
based. The idea behind this is:

The supported requests are represented by a certain number,
which is calculated out of the requests components. These
„magic numbers“ are stored in the ROM-tables
„set_numbers“ and „get_numbers“. Out of any incoming
vendor request the same procedure is used to compute this
number and then it is checked if this number is found in the
set_numbers or get_numbers table. If the number is found,
the corresponding table position represents the decoded
request.

UAC 357xB APPLICATION NOTE SOFTWARE

26 ...; 6251-xxx-1AS Micronas

If more requests needs to be decoded than provided in the
standard firmware the procedure is needed to compute the
„magic numbers“. This is done with the help of Table 5–1
an Table 5–2.

:

Table 5–1: SET numbers

Request Nr. wIndexH wValueH wValueL magic number Request Name

1 1 1 0 16 FU1_MUTE_CUR

2 1 2 1 288 FU1_VOL_CH1_CUR

3 1 2 2 544 FU1_VOL_CH2_CUR

4 1 3 0 48 FU1_BASS_CUR

5 1 5 0 80 FU1_TREBLE_CUR

6 1 7 0 112 FU1_AGC_CUR

7 1 9 0 144 FU1_BASSBOOST_CUR

8 2 1 0 17 FU2_MUTE_CUR

9 2 2 0 33 FU2_VOL_CUR

10 3 1 0 18 FU3_MUTE_CUR

11 3 2 0 34 FU3_VOL_CUR

12 6 1 0 21 FU6_MUTE_CUR

13 6 2 0 37 FU6_VOL_CUR

14 7 0 0 6 SU7_CUR

15 8 0 0 7 SU8_CUR

16 9 1 1 280 MU9_IN1_CUR

17 9 2 1 296 MU9_IN2_CUR

APPLICATION NOTE SOFTWARE UAC 357xB

Micronas ...; 6251-xxx-1AS 27

Table 5–2: GET numbers

Request Nr. wIndexH wValueH wValueL bRequest magic number Request Name

1 1 2 1 82 288 USB_VOL_MIN_FU1_CH1

2 1 2 1 83 1312 USB_VOL_MAX_FU1_CH1

3 1 2 1 84 2336 USB_VOL_RES_FU1_CH1

4 1 2 2 82 544 USB_VOL_MIN_FU1_CH2

5 1 2 2 83 1568 USB_VOL_MAX_FU1_CH2

6 1 2 2 84 2592 USB_VOL_RES_FU1_CH2

7 1 3 0 82 48 USB_BASS_MIN_FU1_CH0

8 1 3 0 83 1072 USB_BASS_MAX_FU1_CH0

9 1 3 0 84 2096 USB_BASS_RES_FU1_CH0

10 1 5 0 82 80 USB_TREBLE_MIN_FU1_CH0

11 1 5 0 83 1104 USB_TREBLE_MAX_FU1_CH0

12 1 5 0 84 2128 USB_TREBLE_RES_FU1_CH0

13 2 2 0 82 33 USB_VOL_MIN_FU02_CH0

14 2 2 0 83 1057 USB_VOL_MAX_FU02_CH0

15 2 2 0 84 2081 USB_VOL_RES_FU02_CH0

16 3 2 0 82 34 USB_VOL_MIN_FU03_CH0

17 3 2 0 83 1058 USB_VOL_MAX_FU03_CH0

18 3 2 0 84 2082 USB_VOL_RES_FU03_CH0

19 6 2 0 82 37 USB_VOL_MIN_FU06_CH0

20 6 2 0 83 1061 USB_VOL_MAX_FU06_CH0

21 6 2 0 84 2085 USB_VOL_RES_FU06_CH0

22 7 0 0 82 6 USB_MIN_SU07

23 7 0 0 83 1030 USB_MAX_SU07

24 7 0 0 84 2054 USB_RES_SU07

25 8 0 0 82 7 USB_MIN_SU08

26 8 0 0 83 1031 USB_MAX_SU08

27 8 0 0 84 2055 USB_RES_SU08

28 9 1 1 82 280 USB_MIN_MU09_IN1

29 9 1 1 83 1304 USB_MAX_MU09_IN1

30 9 1 1 84 2328 USB_RES_MU09_IN1

31 9 2 1 82 296 USB_MIN_MU09_IN2

32 9 2 1 83 1320 USB_MAX_MU09_IN2

33 9 2 1 84 2344 USB_RES_MU09_IN2

UAC 357xB APPLICATION NOTE SOFTWARE

28 ...; 6251-xxx-1AS Micronas

The set numbers are computed with:

(wIndexH-1) + wValueH*16 + wValueL*256

The get number are computed with

=($B23-1)+$C23*16+($E23-82)*16*16*4+$D23*16*16

wIndexH-1 + wValueH*16 + bRequest*256 +
(wValueL-82)*1024

Both set and get numbers are represented with 16bit which
is sufficient for this purpose. The other request components
are checked by normal „if“-structures.

The flowchart should give a better understandig of this pro-
cedure.

Note: The GET_CUR requests also uses the set_number
table, because the structure of these request is very
similiar to the SET_CUR requests.

Note: The SET_INDEX is used to identify the request. It
the table position where the magic number matches
the table entry. In the dsp_control.asm this index is
used as a „jump handler“ to the routines which trans-
fer the audio control parameters to the DSP.

APPLICATION NOTE SOFTWARE UAC 357xB

Micronas ...; 6251-xxx-1AS 29

5.2.2. Examples

An example will illustrate how a new feature is added.

5.2.2.1. How to add new Features and Requests

We want to add the loudness function as an addtional tone
control in the audio path. This is already implemented in the
DSP and only needs to be activated. In order to do that we
need the following steps.

How to change the Descriptor

We need to modify the feature unit 1 (FU1) in the following
way:

.equ FU_ID1 1

;CS-specific Feature Unit Descriptor

.byte 0x0d ;bLength

.byte 0x24 ;Audio class specific interface desc

.byte 0x06 ;Feature Unit descriptor

AUDIO_FEATURE_UNIT_ID1:

.byte FU_ID1 ;Unit ID

.byte MU_ID9 ;Source ID

.byte IT_ID12 ;Source ID ###KS

.byte 0x02 ;ControlSize Length in bytes of bmaControls

.rword 0x0355 ;bmaControls(0);defines supported features in master channel

.rword 0x0002 ;bmaControls(1);defines supported features in log. channel 0

.rword 0x0002 ;bmaControls(2);defines supported features in log. channel 1

.byte 0x00 ;iFeatureindex of string descriptor, descr. feature unit

Loudness works on both channels, so we need to modify the
bma Control(0), which lists all feature in the master channel
(all features which cannot controlled separetely for left and
right channel are listed here). Looking into the audio class
spec tells us that loudness is activated by bit9 in the bma-
Control(0). So the new bmaControl is:

.rword 0x0355 ;bmaControls(0)

UAC 357xB APPLICATION NOTE SOFTWARE

30 ...; 6251-xxx-1AS Micronas

How to implement the Request Handling

Upon enumeration the host now knows that the device sup-
ports loudness, and tries to read the characteristics of this
feature. The only parameter of interest here is a boolean
variable, that switches loudness on and off. Unlike volume
requests or bass/treble request there are no MIN/MAX/RES
parameters here. So we only have to extend the SET-table.

We add Request Nr. 18:

The magic number according to the formula:

(wIndexH-1) + wValueH*16 + wValueL*256 is then

0 + 10x16 + 0x256 = 160

This number is added at the end of the set-table

...
.rword 280 ; MU9_IN1_CUR

.rword 296 ; MU9_IN2_CUR

.rword 160 ; FU1_LOUDN_CUR

This allows to detect if the host wants to set or get the CUR-
value.

Now we need to add a new RAM-variable
USB_FU1_LOUDN_CUR, which holds the CUR-status:

...

SB_SU8_CUR: .rword 0x0000 ;15

USB_MU9_IN1_CUR: .rword 0x0000 ;16

USB_MU9_IN2_CUR: .rword 0x0000 ;17

USB_FU1_LOUDN_CUR: .rword 0x0000 ;18

Remember: the set-table and the CUR-table are both located
in usb_audio_ctl_include.asm

Request Nr. wInd-
exH

wValueH wValueL magic number Request Name

18 1 10 0 296 FU1_LOUDN_CUR

APPLICATION NOTE SOFTWARE UAC 357xB

Micronas ...; 6251-xxx-1AS 31

How to implement the DSP-control

From the USB-host point of view everything is ok now: the
device reports loudness as an audio feature, the device
accepts setting the CUR-value, and the device reports the
CUR-value. But there is still one action missing: the V8
needs to switch the loudness function on and off in the DSP.

This happens in dsp_control.asm. This routine is called after
the SET-request and uses the RAM-variable SET_INDEX
as branching control to the corresponding DSP-control-rou-
tines. The SET_INDEX is the SET-table position of the
detected request, i.e. 18 for our new request.

We extend the branch structure in dsp_control.asm
....

jeq XDFP_RECORD_SELECT;14

dec r0

jeq XDFP_ANALOG_VOLUME;15

dec r0

jeq XDFP_USBDOWN_VOLUME;16

dec r0

jeq XDFP_LOUDNESS

rts

and then, of course, we need to add the new routine
XDFP_LOUDNESS. The easiest way to do this is to copy
and paste an already existing function and change some
names

XDFP_LOUDNESS:

.equ XDFPADR_PLAYBACK_LOUDN0x15 ; XDFP-ADDRESS for Loudness

.equ XDFP_LOUDNESS0x30

; XDFP needs 0x00=Loudness-OFF ; 0x30=Loudness-ON

; USB sends 0=Loudness-OFF 1=Loudness-ON

ldi r2, XDFP_LOUDNESS ; this defines the Loudness-Characteristic

lda r1, USB_FU1_LOUDN_CUR

brne LOUDNON

lda r2, 0x00 ; Loudness off

LOUDNON:

ldi r1, XDFPADR_PLAYBACK_LOUDN

jmp XDFP_SEND_3BYTES ;sends Loudness,0,0 (Hi,Mi,Lo) with rts

Another option here would be to put the
XDFP_LOUDNESS into the Section1 as a parameter that
comes from the EEPROM, because the loudness character-
istic in the DSP can be set to various modes. Using 0x30 is
just one example. See the document UACB – DSP firmware
for more info on the loudness.

UAC 357xB APPLICATION NOTE SOFTWARE

32 ...; 6251-xxx-1AS Micronas

Initialisation

The DSP sets all variables to zero after power up. This
means for our example that loudness is off. This, however
has to correlate with the CUR-value in the V8. Without any

initialisation the CUR-values are all set to zero after power
up and this is exactly what we need. But it is recommended
to always do the initialisation. This is done in the
main_include.asm.

...

; init the Audio_Class

 ldi r0, 0x80

 sta r0, USB_FU1_VOL_CH1_CUR ;mute the playback volume

 sta r0, USB_FU1_VOL_CH2_CUR ;mute the playback volume

 ldi r0, 0x01

 sta r0, USB_SU7_CUR ; init the SU7 to Mic-Input

xor r0

sta r0, USB_FU1_LOUDN_CUR

Now everything is ready to switch Loudness on and off
under control of the operating system. Unfortunately the
WIN mixer does not provide any controls to do that, so this
feature was not implemented in the standard firmware.

Fig. 5–3:

APPLICATION NOTE SOFTWARE UAC 357xB

Micronas ...; 6251-xxx-1AS 33

5.3. DSP Control

The code in dsp_control.asm handles the communication
between the V8 and the DSP. In the standard firmware its is
a one-way communication, which means, data are sent to
from the V8 to the DSP, but nothing is read back. Other

applications, however, may require this, and therefore the
hardware is prepared to do that.
This hardware is highlighted first because it is essential for
understanding this communication.
The next figure shows the control interface between V8 and
DSP:

Fig. 5–4:

The DSP-RAM has a wordlength of 18-bit and so we need
3-bytes from the V8 to completely write one DSP-location.
So we have 3-bytes both for each direction. In case of writ-
ing into the DSP these bytes are named:

– XDFP_DATAIN_HI

– XDFP_DATAIN_MI

– XDFP_DATAIN_LO

and this bytes represent one DSP word as follows:

8

1 0

1 8

1 8

D A T A

A D R _ X D F P

D I N _ X D F P

D O U T _ X D F P

X D F P P O R T

X D F P P O R T

X D F P P O R T

A D D R E S S

T R Q 3

h i

l o w

m id

h i

h i

m id

l o w

l o w

 S T A T U S
R W

M S B

0

7
0

3

B

0
1
0
7
0
7

0
1
0
7
0
7

l s b - b ü n d i g

1 8

XDFP_DAT
AIN_

HI-7 HI-6 HI-5 HI-4 HI-3 HI-2 HI-1 HI-0 MI-7 MI-6 MI-5 MI-4 MI-3 MI-2 MI-1 MI-0 LO-1 LO-0

DSP-word 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

UAC 357xB APPLICATION NOTE SOFTWARE

34 ...; 6251-xxx-1AS Micronas

The address space of the DSP is 10-bit, so we need 2-bytes
to address this. This bytes are named:

– XDFP_ADR_HI

– XDFP_ADR_LO

and build the DSP_address plus R/W -control as follows:

The Read, Write, Busy status-bits are needed as handshake
signals. Their meaning will become clear after the descrip-
tion of the write and read sequence below:

Write Sequence:

V8 has to transmit:

– XDFP_DATAIN_LO

– XDFP_DATAIN_MI

– XDFP_DATAIN_HI

– XDFP_ADR_HI

– XDFP_ADR_LO

The transmission of the low-addressbyte generates the
write-interrupt for the DSP and sets the W- and B-bit in the
statusregister.
The W- and the B-Bit are reset, when the DSP reads the in-
data-register

The W-bit is redundant here and is not used in the standard
firmware

Read Sequence

V8 has to transmit:

– XDFP_ADR_HI

– XDFP_ADR_LO

The transmission of the low-addressbyte generates the read-
interrupt for the XDFP and sets the R- and the B-bit. The
DSP reads the address and writes the required data word
into the out-data register This resets the R-bit.

V8 has to poll the R-bit and fetch the 3-bytes after the R-bit
is reset:

– XDFP_DATAOUT_HI

– XDFP_DATAOUT_MI

– XDFP_DATAOUT_LO

The B-bit is reset after the LO-data is fetched from the V8.

The write-sequence is already implemented in the standard
firmware and there should be no need to change this. The
routine is located in the upper-rom and is called
XDFP_SEND_3bytes. This routine handles the complete
write sequence, including the handshake (using B-bit).

The values are passed by registers:

– r1 = XDFP_ADR_LO

– r2 = XDFP_DATAIN_HI

– r3 = XDFP_DATAIN_MI

– r4 = XDFP_DATAIN_LO

There is no XDFP_ADR_HI and so only the lower 256
words within the DSP-RAM-space can be addressed with
this routine. The DSP-firmware, however, holds all control
variables within this lower address space, so there is no need
for the HI-byte.

In the same way a XDFP_READ_3bytes can be created.

XDFP_ADR_ _HI7 _HI6 _HI5 _HI4 _HI3 _HI2 _HI1 _HI0 _LO7 _LO6 _LO5 _LO4 _LO3 _LO2 _LO1 _LO0

DSP_
ADDRESS

0= RD
1=WR

9 8 7 6 5 4 3 2 1 0

APPLICATION NOTE SOFTWARE UAC 357xB

Micronas ...; 6251-xxx-1AS 35

5.4. Sample Rate Control

The samplerate requests are endpoint control requests and
are needed for ISO upstreaming.The SET_SAMPLERATE
tells the device how many audio samples per frame the host
expects.The samplerate is represented as a 3-byte word, but
for the UACB samplerate range (6.4kHz ...48kHz) only 2-
bytes are required, so the high byte is ignored for further
processing.

The samplingrate is specified in Hz. So 0x00bb80 is trans-
ferred with the SET_SAMPLERATE request, when
48000Hz is required. This number is the input for an algo-
rithm that computes the number of samples per frame, i.e.
samples per millisecond, what is basically a „devide by
1000“ operation in case of „integer multiples of 1000“ -
samplerates. In all other cases the „devide by 1000“ algo-
rithm result in a nonzero remainder. This remainder is then
accumulated 1000 times and when the accumulator over-
flows an additional sample is transmitted.

The samplerate goes into the DSP too. Here it is needed as
an initial value for the samplerate conversion.

Note: The A/D conversion is running on 48kHz, indepen-
dantly of what the iso-upstream requires. The adap-
tion to the required samplerate is done by samplerate
conversion.

Note: It is observed that SET_SAMPLERATE is also
transferred preceeding an iso-downstream. This was
not the case with downstream-only devices (UACA).
Here this information is not required but on the other
hand it is not allowed to stall this request. So it is
handled also. Otherwise the host would never send
iso-downstream data.

The following samplingrate request are supported:

– SET CUR

– GET CUR

– GET MIN

– GET MAX

– GET RES

After a SET CUR request the samples per frame are calcu-
lated and stored in the upstream BDT.

At this point the complete algorithm is running including the
„devide by 1000“ code („subtract 1000 until result is nega-
tive“).

During ISO-uopstream only the fractional part of the „sam-
ples per frame“ algorithm is computed. The integer part
does not change at a given samplerate.

UAC 357xB APPLICATION NOTE SOFTWARE

36 ...; 6251-xxx-1AS Micronas

Fig. 5–5: Sample rate control handling

check wIndexL if
ISO - up/down EP wrong EP

EP ok

STALL

check wValueH if
SET_Samplingrate wrong Identifier STALL

Identifier ok

check if SET or
GET

handle set_request data
phase;

store 2-bytes in
USB_FS_CUR

no

GET

check if
GET_CUR

no

check if
GET_MIN

check if
GET_MAX

no

check if
GET_RESSa

mplerate

yes

STALL

no

SET

yes

yes

yes

handle GET_MAX
data phase

handle GET_RES
data phase

handle GET_MIN
data phase

handle GET_CUR
data phase

Samplerate

calculate samples per
frame & initialize
upstream BDT

APPLICATION NOTE SOFTWARE UAC 357xB

Micronas ...; 6251-xxx-1AS 37

UAC 357xB APPLICATION NOTE SOFTWARE

38 ...; 6251-xxx-1AS Micronas

6. GPIO Handling

This chapter describes the usage of the 12 GPIO pins. First a
description of the various modes is given.

Each GPIO-pin can be used either as input or as output pin.
The direction of each pin is defined in the following hard-
ware control registers:
_LO defines GPIO0....7LSB == GPIO0, MSB == GPIO7

_HI defines GPIO8..11LSB == GPIO8; BIT3 == GPIO11

GPIO_CONFIG_LO0xb0510 = input; 1 = output

GPIO_CONFIG_HI0xb058

In case of output, the padstrength (value???) can be set to
either high or low:
(for other pins see the UACB – V8 reference)
GPIO_PADSTRENGTH_LO:0xb0550 = weak; 1 = strong

GPIO_PADSTRENGTH_HI:0xb056

In case of input, an internal pulldown (250k) can be
switched either on and off
GPIO_PULLDOWN_LO0xb0590 = pulld. on; 1 = pulld. off

GPIO_PULLDOWN_HI0xb05a

The standard firmware defines the default GPIO characteristic in Section1:
SED_DEFAULT_GPIO_CONFIG_LO_DEFAULT:; default 0, 1 = output

.byte 0x00

SED_DEFAULT_GPIO_CONFIG_HI_DEFAULT:; default 0, 1 = output

.byte 0x00

SED_DEFAULT_GPIO_PULLDOWN_LO_DEFAULT:; default: 1 (pulldown on)

.byte 0xff

SED_DEFAULT_GPIO_PULLDOWN_HI_DEFAULT:; default: 1 (pulldown on)

.byte 0xff

SED_DEFAULT_GPIO_PADSTRENGTH_LO_DEFAULT:; default: 0 (weak)

.byte 0x00

SED_DEFAULT_GPIO_PADSTRENGTH_HI_DEFAULT:; default: 0 (weak)

.byte 0x00

This values are copied from the bootloader into the Section1
RAM mirror image (see Section1 concept) and from there
copied into RAM shadow registers. This was required
because the hardware control register are read only and so
the V8 needs to keep track of the actual status either for
internal purpose or for reporting it to an external controller
(USB-Host, I2C-Controller etc). This is used for some other
hardware register too. Unfortunately this wastes some RAM
space

APPLICATION NOTE SOFTWARE UAC 357xB

Micronas ...; 6251-xxx-1AS 39

The following sequence (including the RAM addresses) can
be found in main_include.asm:
A709 lda r0, GPIO_CONFIG_LO_DEFAULT

A184 sta r0, GPIO_CONFIG_LO_SHADOW

A70A lda r0, GPIO_CONFIG_HI_DEFAULT

A185 sta r0, GPIO_CONFIG_HI_SHADOW

A70B lda r0, GPIO_PULLDOWN_LO_DEFAULT

A186 sta r0, GPIO_PULLDOWN_LO_SHADOW

A70C lda r0, GPIO_PULLDOWN_HI_DEFAULT

A187 sta r0, GPIO_PULLDOWN_HI_SHADOW

A70D lda r0, GPIO_PADSTRENGTH_LO_DEFAULT

A188 sta r0, GPIO_PADSTRENGTH_LO_SHADOW

A70E lda r0, GPIO_PADSTRENGTH_HI_DEFAULT

A189 sta r0, GPIO_PADSTRENGTH_HI_SHADOW

The shadow registers are then copied into the hardware reg-
ister in the routine V8_RESTORE_SHADOW_REGS (also
located in main_include.asm). The routine
V8_RESTORE_SHADOW_REGS runs after RESET and is
also called in the scheduler taks 5 (see „The Scheduler Con-
cept“). By setting the associated scheduler bit the routine
runs every 1ms.

This automatic update allows to control the GPIOs just by
setting the shadow registers. In this case, however, it must
be observed that there may be a delay of up to 1ms between
writing into the shadow registers and the update of the hard-
ware register. If this delay is not acceptable, the hardware

registers needs to be controlled directly. In this case, how-
ever, it is strictly recommended to update the shadow regis-
ters too, in order to have identical information in both hard-
ware and shadow registers.

In most applications the configuration of the GPIOs will be
static, i.e: a pin is either input or output, with or without
pulldown etc., and this configuration is defined in section1
as default data.

More important for applications, however, is the writing or
reading to or from the GPIO pins itself.

The status of the lower bits 0...7 is defined in:
b0A0GPO_REG[0:7]

The status of the upper bits 8...11 is defined in:
b0A1GPIO_REG[4...7]

The status of the lower input pins 0...7 is found in:
b0A2GPI_REG[0...7]

The status of the upper input pins 8...11 is found in
b0A1GPIO_REG[0...3]

Here we don’t need the shadow register concept, because all
this register are readable.

Note: The standard firmware uses only GPIO0..3 as input
pins for the HID functions.

UAC 357xB APPLICATION NOTE SOFTWARE

40 ...; 6251-xxx-1AS Micronas

6.1. Memory Mapped Mode

The GPIOs can also be used in a memory mapped mode.
This means the address range

b0b0...b0bf

is transparent to the GPIOs. GPIO0..7 are mapped to the
databus and GPIO8...11 are mapped to the lower four bits of
the addressbus. This means for example, writing a 0xaa to
b0bf results in 0xaa at the GPIO0...7 and 0xf at GPIO8...11.
In this mode the GPIO8...11 need to be set as output pins, of
course.

How does the standard firmware use the GPIOs?

Looking into the report descriptor tells that four HID audio control functions are defined:
; assigned real keys

.rword 0xE909 ; Usage Volume UP

.rword 0xEA09 ; Usage Volume DOWN

.rword 0xE209 ; Usage MUTE

.rword 0xE509 ; Usage BASS BOOST

This functions are assigned to the GPIO0...3. High level at
GPIO0 ramps up the volume for example.

This means this pins need to be polled by the V8, in order to
report their state on request to the host.

As polling rate the 1ms timebase is used, which is provided
in the scheduler. Scheduler task 0 calls the routine
USB_GET_KEY located in gpio_control.asm. Some notes
on the USB_GET_KEY is given below.

6.2. Debouncing

For debouncing a simple timer function is used. After detec-
tion of high level at one of the GPIO..3 a timer
(KEY_TIMER) is started (software timer) counting from
MAX_KEY_TIMER down to zero. MAX_KEY_TIMER is
defined in Section1
SED_DEFAULT_MAX_KEY_TIMER:

.byte 0x7f

As long as the counter did not finish zero, there is no new
polling. This timer also defines the repetition rate of a per-
manent pressed key (defines for example, how fast the vol-
ume slider in the WIN mixer goes up and down).

Note: This simple method does not protect from noise or
spikes on the pins. For this kind of problems averag-
ing algorithm should be used.

APPLICATION NOTE SOFTWARE UAC 357xB

Micronas ...; 6251-xxx-1AS 41

6.3. Reporting the Keycode

according to the HID endpoint descriptor the USB-host
sends IN-tokens to the EP3 at a fixed rate which is defined
in the
.byte 0xfe;bInterval

variable. The standard firmware holds this value as a
Section1 variable (see „The FE-concept“)
.from data_sec1.asm.

SED_DEFAULT_USB_CONFIG_ATTRIBUTES_CUSTOM:

.byte 0xc0 ; bmAttributesattributes - self powered

.byte 0x00 ; MaxPowerself-powered draws 0 mA from the bus.

.byte 0x08 ; bInterval, TR 7.7.99 was the *last* byte of the config_descriptor

0x08 means, that the IN-token comes every 8ms or in every
8th frame.

The IN-token expects to get the number of the key, which
may be pressed, as a so called keycode in the data phase.
So, for example, if high-level at GPIO3 is dedected, a
0x0003 is reported after the next IN-token. The USB-host
associates this keycode with the HID function MUTE-tog-
gle. The standard firmware uses 2-bytes in the data phase.

Note: Also the unassigned keys are reported (GPIO4...7)
and can be used for vendor specific purpose.

6.4. Toggle Keys

GPIO2 (mute) and GPIO3 (bassboost) are used as toggle
keys. This means, if this keys keep pressed all the time, it is
not wanted that the assigned function toggles between on
and off. The state should just toggle once and stay there
until the key is released and pressed again. Although there
may be a smarter way to do it, this is solved by sending a
„keycode without function“ after the keytimer accepts a new
polling. Without this the same keycode would be sent all the
time.

;;HID Endpoint Descriptor

.byte0x07;bLength

.byte0x05;bDescriptortype = Endpoint

.byte0x83;bEndpointAddress

.byte0x03;bAttributes

.rword0x0002;wMaxPacketSize;db 29.09.1999 0305 because of ext. HID

.byte0xfe;bInterval TR 7.7.99 moved to EEPROM

UAC 357xB APPLICATION NOTE SOFTWARE

42 ...; 6251-xxx-1AS Micronas

6.5. GPIO port configurations.

The UAC 357xB can set the GPIO port into different con-
figurations.

– Standard mode

– Address mode

The GPIOs can be grouped in 2 different types:

– Input and output pins: GPIO[0..11]

– Control pins: RD, STRB

The port pins can also be set into different electrical states:

– weak or strong driver strength

– output or tristate

– internal pulldown on or off

Table 6–1: GPIO port configurations

Pin name Standard mode Address mode

GPIO [0] – Generic I/O

– HID: Volume down

Generic parallel I/O

GPIO [1] – Generic I/O

– HID: Volume up

Generic parallel I/O

GPIO [2] – Generic I/O

– HID: Mute button

Generic parallel I/O

GPIO [3] – Generic I/O

– HID: Bass boost button

Generic parallel I/O

GPIO [4] Generic I/O Generic parallel I/O

GPIO [5] Generic I/O Generic parallel I/O

GPIO [6] Generic I/O Generic parallel I/O

GPIO [7] Generic I/O Generic parallel I/O

GPIO [8] Generic I/O Adr [0]

GPIO [9] Generic I/O Adr [1]

GPIO [10] – Generic I/O

– Start timer

Adr [2]

GPIO [11] – Generic I/O

– PWM out

Adr [3]

RD no function Shows I/O direction
Read (high level) input
Write (low level) output

STRB no function Strobe pulse, marks valid data

APPLICATION NOTE SOFTWARE UAC 357xB

Micronas ...; 6251-xxx-1AS 43

6.6. The parallel interface mechanism (RD/STRB)

The controlling processor (V8) is able to access external
components using the GPIO-pins together with the pins RD
and STRB as a parallel interface.

In this mode, the GPIO[7:0] are used as 8-bit data bus and
the GPIO[11:8] as address bus. The state of the pin RD tells
the external device if the V8 is going to read from or write
into it. HIGH means “read“, LOW means “write“. In case of
a write-access into an external device, this device has to be
informed when the data on GPIO are stable (valid). This
information provides the STRB-pin. At it’s positive edge,
the data are valid and can be read by the external device.

As shown in the timing, it takes 3 clocks (12MHz each) for
1 transaction. The interface, however, can be reprogrammed
to reduce the transaction-time to 2 clocks (for example if a
fast periphery is attached).

It’s important to note that after finishing an access, the par-
allel interface releases the I/O-control over the GPIO[11:0].
Now the contents of the I/O-configuration registers
V8W_PIO and V8W_PIO2 again take control of the
GPIO[11:0]-direction. Therefore it is important to custom-
ize these registers according to the external circuitry to
avoid driver crashes or floating inputs. A good approach is
to program all GPIO’s to output and connect the CS/CE
(ChipSelect/ChipEnable) of the external components to the
STRB/RD-pins in a way, that their drivers onto GPIO[7:0]
are activated only when RD= STRB= HIGH.

Fig. 6–1: gives an overview of the architecture of the
UACB.

xto

GPIO[11:8]

GPIO[7:0]

address

data

RD

STRB

UACB reads data here

address

data

UACB reads from extern device UACB writes to extern device

(address is driven by UACB) (address is driven by UACB)

(external device drives datalines) (UACB drives datalines)

valid data

UAC357xB parallel interface timing

UAC 357xB APPLICATION NOTE SOFTWARE

44 ...; 6251-xxx-1AS Micronas

7. Alternate Downstream ISO Endpoint

7.1. How to use the alternative downstream ISO-Endpoint

The descriptor

.equ EP2_IFC_NR 5
 .equ EP2_OUT_ADR 0x02
 .equ USB_EP2_BUFFER_SIZE 0xC0

;;Standard Interface Descriptor for alternate setting 0
.byte 0x09 ;blength Length of this desriptor
.byte 4 ;bDescriptorType 4=INTERFACE
.byte EP2_IFC_NR ;bIfaceNum interface number
.byte 0 ;bAltSetting Alternate setting 0
.byte 0x00 ;bNumEndpoints Number of endpoints= use EP0 only
.byte 0xFF ;bIfaceClass Interface class
.byte 0xFF ;bIfaceSubClass
.byte 0xFF ;bIfaceProtocol
.byte 0x00 ;iInterface String

;---

 ;; Standard Interface Descriptor for alternate setting 1
.byte 0x09 ; blength Length of this desriptor
.byte 4 ; bDescriptorType 4=INTERFACE
.byte EP2_IFC_NR ; bIfaceNum interface number
.byte 1 ; bAltSetting Alternate setting
.byte 0x01 ; bNumEndpoints Number of endpoints
.byte 0xFF ; bIfaceClass Interface class
.byte 0xFF ; bIfaceSubClass
.byte 0xFF ; bIfaceProtocol
.byte 0x00 ; iInterface String

 ;;EP2 Out-Endpoint Desriptor
.byte 7 ; bLength Length of this descriptor
.byte 5 ; bDescType ENDPOINT

 .byte EP2_OUT_ADR ; bEndpointAddress
.byte 0x01 ; bmAttr: its a ISO endpoint
.rword USB_EP2_BUFFER_SIZE ; wMaxPacketSize
.byte 1 ; bInterval - for isochronous EPs must be set to 1

APPLICATION NOTE SOFTWARE UAC 357xB

Micronas ...; 6251-xxx-1AS 45

8. Appendex 1: SDK

-> von W. Platzer bis KW 26

UAC 357xB APPLICATION NOTE SOFTWARE

46 ...; 6251-xxx-1AS Micronas

9. Appendix 2: DSP Firmware

9.1. Overview

Figure 9–1 gives an overview of the signal flow inside the
DSP firmware. Table 9–1 summarizes the two feature sets.

Fig. 9–1: block diagram of XDFP firmware

Table 9–1: Feature set overview ((x) = not implemented in version A0-C2)

features reduced full feature reduced full

Mic/Line input incl. Mic-Bias x x Balance x x

deemphasis x x Volume x x

USB downstream (6.4 .. 48 kHz) x x DAC L/R x x

synchr./asyn. I2S input x/- x/(x)

Mixer x x Micronas Dynamic Bass - x

AVC/Bass/Treble/Loudness - x USB upstream (6.4 .. 48 kHz) x x

parametric EQ - x synchr. I2S output x x

A
D

A
D

Q-Peak

Mono

D
ee

m
ph

as
is

of
f/5

0µ
s/7

5µ
s ADC

mix

USB

mix

SaRC

I2S

mix

USB

I2S

AVC

Bass/
Treble/ EQ

Comple-

mentary

Highpass
MDBLoud-

ness

D
A

D
A

Volume

B
al

an
ce

Q-Peak
Se

le
ct

0

4

1

2

SaRC
Scale

I2SSe
le

ct Scale

USB

5

3

0

4

1

2

5

3

(8hex)(1hex) (8hex)

(6hex)

(5hex)

(7hex)

(0hex)

(3hex)

(3hex)

(4hex)

(4hex)

(9hex)

(34hex)

(12hex) (13-15hex) (20-2fhex)
(18-1bhex)

(17hex)
(11hex) (10hex)

complete mix

I2S input

USB Ls/Rs

ADC+USBmix

USB L/R

ADC input

complete mix

ADC+USBmix

ADC input

USB L/R

USB Ls/Rs

I2S input

only available in
full-feature mode

SaRC

(0hex)

(o
ff

,5
0µ

s,7
5µ

s,
D

ee
m

ph
as

is

50
/1

5µ
s)

(0hex)

Mic-Bias

Line1

Mic1

Line2

Mic2

APPLICATION NOTE SOFTWARE UAC 357xB

Micronas ...; 6251-xxx-1AS 47

9.2. User Registers

Table 9–2: DSP Write Registers

Register
Address

Function Name

A/D- D/A CONVERTER CONFIGURATION

00 01hex Converter Configuration (Reset 0x00)

bit [17..14] ADC left amplifier gain

bit [13..10] ADC right amplifier gain
1111 +19.5 dB
1110 +18.0 dB
1101 +16.5 dB
1100 +15.0 dB
1011 +13.5 dB
1010 +12.0 dB
1001 +10.5 dB
1000 +9.0 dB
0111 +7.5 dB
0110 +6.0 dB
0101 +4.5 dB
0100 +3.0 dB
0011 +1.5 dB
0010 0.0 dB
0001 -1.5 dB
0000 - 3.0 dB (reset)

bit [9] 0/1 Microphone Bias

bit [8] 0/1 pseudo Differential Mode Line In right

bit [7] 0/1 pseudo Differential Mode Line In left

bit [6] 0/1 Line-in R/Microphone R selected for ADC right

bit [5] 0/1 Line-in L/Microphone L selected for ADC left

bit [4] 0/1 off/on ADC left

bit [3] 0/1 off/on ADC right

bit [2..1] 0 undefined

bit [0]0/1............ Headphone off/on (DAC only), (Default is off). if headphone
dacs are switched on, the headphone opamps must be
enabled (V8: Analog Control bit[7]=1).

CONV_CONF

UAC 357xB APPLICATION NOTE SOFTWARE

48 ...; 6251-xxx-1AS Micronas

I2S-CONFIG

00 00hex I2S-config (Reset 0x00)

bit [17] co-processor mode
0 : mix of USB, ADC and I2S input to DAC
1 : only I2S input to DAC

bit[16] I2S input sync mode
0 : synchronous (fs=48 kHz)
1 : adaptive slave (fs=6.4 ... 48 kHz)

Note: if bit[16] is set, the USB downstream is only supported with
decreased performance.

bit[15:10] Deemphasis select
0 : deemphasis off
1 : deemphasis 50 µs
2 : deemphasis 75 µs
3 : deemphasis 50/15 µs

bit [9:7] reserved, must be set to zero

bit [6] I2S input wordstrobe polarity
0 : 1-left, 0-right
1 : 0-right, 1-left

bit [5] I2S input wordstrobe strobe justification
0 : WS changes at data word boundaries
1 : WS changes one clock cycle in advance

bit [4] I2S output wordstrobe polarity
0 : 1-left, 0-right
1 : 0-right, 1-left

bit [3] I2S output wordstrobe strobe justification
0 : WS changes at data word boundaries
1 : WS changes one clock cycle in advance

bit [2] I2S output timing generator settings
0 : 2*32 bit (3.072 MHz)
1 : 2*16 bit (1.536 MHz)

bit [1:0] reserved, must be set to zero

Note: bit[9:2] available only in D3-hardware

I2S_CONFIG

MODE SELECT

00 02hex clock and feature set select (Reset 0x01)

bit [17:2] reserved, must be set to 0

bit [1:0] mode
0 full feature set (fclk=72 MHz)
1 reduced feature set (fclk=48 MHz)

DSP_CLK

Table 9–2: DSP Write Registers

Register
Address

Function Name

APPLICATION NOTE SOFTWARE UAC 357xB

Micronas ...; 6251-xxx-1AS 49

ANALOG INPUT PROCESSING

00 08hex Input Mode Setting

bit [17] Mono switch
0 stereo through
1 left channel is copied into the right channel

bit [15:4] Reserved, must be set to 0

bit [3:2] Deemphasis select
0 deemphasis off
1 deemphasis 50 µs
2 deemphasis 75 µs

bit [1:0] Reserved, must be set to 0

ADC_IN_MODE

USB UPSTREAM PARAMETERS

00 09hex USB upstream settings

bit [17:2] Sample Frequency in Hz (e.g. 44.1 kHz = AC44hex)

bit [1:0] number of channels
00 mono
01 stereo

USB_OUT_FS

USB DOWNSTREAM PARAMETERS

00 34hex USB downstream setting

bit [17:2] Reserved, must be set to 0

bit [1:0] number of channels
0hex mono
1hex stereo
3hex 4 channels (maximum fs=24 kHz !)

USB_IN_CHANS

Table 9–2: DSP Write Registers

Register
Address

Function Name

UAC 357xB APPLICATION NOTE SOFTWARE

50 ...; 6251-xxx-1AS Micronas

OUTPUT SOURCE SELECTORS

00 03hex USB upstream source selector

bit [17:10] Scale factor table with 1 dB step size
79hex +6 dB (maximum volume)
78hex +5 dB
...
74hex +1 dB
73hex 0 dB
72hex −1 dB
...
02hex −113 dB
01hex −114 dB
00hex mute (reset condition)

bit [9:2] Source Select
0hex ADC input
1hex USB downstream channels 1+2
2hex USB downstream channels 3+4
3hex I2S input
4hex mix of ADC + USB downstream
5hex complete mix

bit [1:0] Reserved, must be set to 0

USB_OUT_SEL

00 04hex I2S source selector

bit [17:10] Scale factor table with 1 dB step size
79hex +6 dB (maximum volume)
78hex +5 dB
...
74hex +1 dB
73hex 0 dB
72hex −1 dB
...
02hex −113 dB
01hex −114 dB
00hex mute (reset condition)

bit [9:2] Source Select
0hex ADC input
1hex USB downstream channels 1+2
2hex USB downstream channels 3+4
3hex I2S input
4hex mix of ADC + USB downstream
5hex complete mix

bit [1:0] Reserved, must be set to 0

I2S_OUT_SEL

Table 9–2: DSP Write Registers

Register
Address

Function Name

APPLICATION NOTE SOFTWARE UAC 357xB

Micronas ...; 6251-xxx-1AS 51

MIXER UNIT

00 05hex
00 06hex
00 07hex

ADC mixing gain
USB downstream mixing gain
I2S mixing gain

bit [17:10] Scale factor table with 1 dB step size
79hex +6 dB (maximum volume)
78hex +5 dB
...
74hex +1 dB
73hex 0 dB
72hex −1 dB
...
02hex −113 dB
01hex −114 dB
00hex mute (reset condition)

bit [9:0] Reserved, must be set to 0

MIX_ADC
MIX_USB
MIX_I2S

BASEBAND PROCESSING

00 13hex Bass

bit [17:10] Bass range
60hex +12 dB
58hex +11 dB
...
08hex +1 dB
00hex 0 dB
f8hex −1 dB
...
a8hex −11 dB
a0hex −12 dB

Higher resolution is possible, one LSB step results in a gain step of about
1/8 dB.

With positive bass settings clipping of the output signal may occur. Therefore, it is
not recommended to set bass to a value that results in conjunction with volume to an
overall positive gain.

bit [9:0] Reserved, must be set to 0

BASS

Table 9–2: DSP Write Registers

Register
Address

Function Name

UAC 357xB APPLICATION NOTE SOFTWARE

52 ...; 6251-xxx-1AS Micronas

00 14hex Treble

bit [17:10] Treble range
60hex +12 dB
58hex +11 dB
...
08hex +1 dB
00hex 0 dB
f8hex −1 dB
...
a8hex −11 dB
a0hex −12 dB

Higher resolution is possible, one LSB step results in a gain step of about
1/8 dB.

With positive treble settings, clipping of the output signal may occur. Therefore, it is
not recommended to set treble to a value that results in conjunction with volume to an
overall positive gain.

bit [9:0] Reserved, must be set to 0

TREBLE

00 15hex Loudness

bit [17:10] Loudness Gain
44hex +17 dB
40hex +16 dB
...
04hex +1 dB
00hex 0 dB

bit [9:2] Loudness Mode
00hex normal (constant volume at 1 kHz)
04hex Super Bass (constant volume at 2 kHz)

bit [1:0] Reserved, must be set to 0

Higher resolution of Loudness Gain is possible: An LSB step results in a gain step of
about 1/4 dB.

Loudness increases the volume of low- and high-frequency signals, while keeping
the amplitude of the 1-kHz reference frequency constant. The intended loudness has
to be set according to the actual volume setting. Because loudness introduces gain, it
is not recommended to set loudness to a value that, in conjunction with volume,
would result in an overall positive gain.

The corner frequency for bass amplification can be set to two 2 different values. In
normal mode, the point of constant volume is at 1kHz. In Super Bass mode, the point
of constant volume is at 2kHz.

LDNESS

Table 9–2: DSP Write Registers

Register
Address

Function Name

APPLICATION NOTE SOFTWARE UAC 357xB

Micronas ...; 6251-xxx-1AS 53

00 0ehex D/A output mode

bit [17] Mono switch
0 stereo through
1 mono matrix applied

bit [16] Invert right channel
0 through
1 right channel is inverted

bit [15:0] Reserved, must be set to 0

In order to achieve more output power a single loudspeaker can be connected as a
bridge between pins OUTL and OUTR. In this mode bit[17] and bit[16] must be set.

DAC_OUT_MODE

Table 9–2: DSP Write Registers

Register
Address

Function Name

UAC 357xB APPLICATION NOTE SOFTWARE

54 ...; 6251-xxx-1AS Micronas

MICRONAS DYNAMIC BASS (MDB)

00 18hex MDB Effect Strength

bit[17:10] 00hex MDB OFF (default)
7Fhex maximum MDB

The MDB effect strength can be adjusted in 1dB steps. A value of 44hex will yield a
medium MDB effect.

bit[9:0] 00hex must be zero

MDB_STR

00 19hex MDB Harmonic Content

bit[17:10] 00hex no harmonics are added (default)
40hex 50% fundamentals + 50% harmonics
7Fhex 100% harmonics

The MDB exploits the psychoacoustic phenomenon of the ‘missing fundamental’ by
creating harmonics of the frequencies below the highpass frequency of the MDB
(MDB_HP). This enables a loudspeaker to reproduce frequencies that are below its
cutoff frequency. The Variable MDB_HMC describes the ratio of the harmonics
towards the original signal.

bit [9:0] 00hex must be zero

MDB_HMC

00 1ahex MDB Center Frequency

bit[17:10] 2 20 Hz
3 30 Hz
...
30 300 Hz

The MDB center frequency defines the center frequency of the MDB bandpass filter.

bit[9:0] 00hex must be zero

MDB_FC

00 1bhex MDB Amplitude Limit

bit[17:10] 00hex 0 dbFS (default, no limitation)
FFhex −1 dbFS
...
E0hex −32 dbFS

The MDB Amplitude Limit defines the maximum allowed amplitude at the output of
the MDB relative to 0 dbFS. If the amplitude exceeds MDB_LIM, the gain of the
MDB is automatically reduced. Set this value to avoid overloading the speakers.

bit[9:0] 00hex must be zero

MDB_LIM

Table 9–2: DSP Write Registers

Register
Address

Function Name

APPLICATION NOTE SOFTWARE UAC 357xB

Micronas ...; 6251-xxx-1AS 55

VOLUME

00 10hex Main Volume Control

bit [17:10] Volume table with 1 dB step size
7fhex +12 dB (maximum volume)
7ehex +11 dB
...
74hex +1 dB
73hex 0 dB
72hex −1 dB
...
02hex −113 dB
01hex −114 dB
00hex mute (reset condition)

bit [9:0] Reserved, must be set to 0

This main volume control is applied to the analog outputs only. It is split between a
digital and an analog function. In order to avoid noise due to large changes of the set-
ting, the actual setting is internally low-pass filtered.

With large scale input signals, positive volume settings may lead to signal clipping.

VOLUME

00 11hex Balance

bit [17:10] Balance range
7Fhex Left −127 dB, Right 0 dB
7Ehex Left −126 dB, Right 0 dB
...
01hex Left −1 dB, Right 0 dB
00hex Left 0 dB, Right 0 dB
FFhex Left 0 dB, Right −1 dB
...
81hex Left 0 dB, Right −127 dB
80hex Left 0 dB, Right −128 dB

bit [9:0] Reserved, must be set to 0

Positive balance settings reduce the left channel without affecting the right channel;
negative settings reduce the right channel leaving the left channel unaffected.

BALANCE

00 12hex Automatic Volume Correction (AVC) Loudspeaker Channel

bit [17:14] 00hex AVC off (and reset internal variables)
08hex AVC on

bit [13:10] 08hex 8 sec decay time
04hex 4 sec decay time
02hex 2 sec decay time
01hex 20 ms decay time (intended for quick adaptation to the aver-

age volume level after track or source change)

bit [9:0] Reserved, must be set to 0

Note: To reset the internal variables, the AVC should be switched off and then on
again during any track or source change. For standard applications, the recommended
decay time is 4 sec.

AVC

Table 9–2: DSP Write Registers

Register
Address

Function Name

UAC 357xB APPLICATION NOTE SOFTWARE

56 ...; 6251-xxx-1AS Micronas

Table 9–3: DSP Read Registers

Register
Address

Function Name

ADC QUASI-PEAK DETECTOR READOUT

00 0ahex A/D Converter Quasi-Peak Detector Readout Left

bit [14:0] positive 15-bit value, linear scale

QPEAK_L

00 0bhex A/D Converter Quasi-Peak Detector Readout Right

bit [14:0] positive 15-bit value, linear scale

QPEAK_R

DAC QUASI-PEAK DETECTOR READOUT

00 0chex Audio Processing Input Quasi-Peak Detector Readout Left

bit[14..0] positive 15-bit value, linear scale

DQPEAK_L

00 0dhex Audio Processing Input Quasi-Peak Detector Readout Right

bit[14..0] positive 15-bit value, linear scale

DQPEAK_R

APPLICATION NOTE SOFTWARE UAC 357xB

Micronas ...; 6251-xxx-1AS 57

10. Appendix 3: V8 Controller Registers

UAC357xB - V8 reference

V. Summa, T. Ruhnau, D. Bächer, W. Platzer, C. Noeske, M. Win-
terer

10.1.Overview

Figure 10–1 gives an overview of the architecture of the
UACB.

Fig. 10–1: UACB architecture

V8

DSP

DSP-ctrl
address

data

Upstream

8

USB
Interface

Downstream
Interface

Mic1-in
Line1-in

Left out
Right out

I2S-out

USB-Bus

Clk/V-ctrl.I2C

Interface
Engine

I2S-inUSB-I2S-out

WS CL DAIDAOUWS UCLUDAT

master/
slave

i2sxt

Mic2-in
Line2-in

UAC 357xB APPLICATION NOTE SOFTWARE

58 ...; 6251-xxx-1AS Micronas

10.2.V8 Memory Layout
Table 10–1:

Adress Function

0000hex...2fffhex 12 kbytes ROM,

lowest 8 kbytes are covered by V8 EMU RAM,

area above 8k is used by boot loader and some other boot time routines

8000hex...9fffhex 8 kbytes EMU RAM (mapped to lowest ROM area if v8_emu_reg[0] == 1

a000hex...a7ffhex 2 kbytes RAM

a000hex...a07fhex:128 bytes BDT (16 bytes per EP)

a080hex...a0ffhex:128 bytes jump table

a100hex...a10fhex:16 bytes interrupt vectors

a110hex...a17fhex:112 bytes stack

a180hex...a200hex:128 bytes variables

EP7 is not being implemented so the respective 16 bytes are used for variable space.

The lowest 32 bytes of the stack is also used for variables

If the boot loader finds a plugin within an EEPROM the first data byte of the plugin is interpreted
as offset within the jump table. The respective ‘jmp’ command is substituted with a jump to the
plugin space.

The RAM-clear routine clears from a000hex...a23fhex

APPLICATION NOTE SOFTWARE UAC 357xB

Micronas ...; 6251-xxx-1AS 59

10.3.V8 Peripherals & Control & Status Registers

10.3.1.V8 General & Interface Registers
Table 10–2: V8 General & Interface Registers

Register
Address

Function Name

b000hex USB control register (rw)

bit[7:4] do not use (the highest prioritized interrupts (ro))

bit[3] = 1: Vbus (ro)

bit[2] = 1: suspend marker

bit[1] = 1: USB activity detected, set by non-idle state

bit[0] = 1: suspend mode, reset by non-idle state via combinational logic

usb_ctl_reg

b001hex V8 control register (rw)

bit[7] = 1: GPIO[[11] is pwm_out, = 0: GPIO[11] has normal function

bit[6] = 1: flag used in V8 software: dont run any schedulers

bit[5] = 1: flag used in V8 software: dont run the boot loader

bit[4] = 1: use alt_iso_out, = 0 : use ‘dumb_serial_interface’ i.e. I2S like

bit[3] = 1: pullup D+ (USB connected), = 0 : D+ floating (USB disconnected)

bit[2] : access to sie 0: two wait states 1: three wait state

bit[1] : access to gpb 0: two wait states 1: one wait state

bit[0] : access to i2c 0: two wait states 1: one wait state

v8_ctl_reg

b002hex V8 interrupt enable register (rw)
bit assignment for default priority scheme (0)

bit[7:5] priority code (8 schemes)

bit[4] = 1: enable i2c_int, lowest prio, maskable by PSR[3]

bit[3] = 1: enable usb_int, maskable by PSR[3]

bit[2] = 1: enable timer_int, maskable by PSR[3]

bit[1] = 1: enable im_int (from XDFP) 2nd highest prio, maskable by PSR[3]

bit[0] = 1: enable test_int, nonmaskable with highest priority

v8_int_enb

UAC 357xB APPLICATION NOTE SOFTWARE

60 ...; 6251-xxx-1AS Micronas

b003hex V8 emu register (rw)

bit[7]: flag used in V8 SW: I2C slave maps subaddr ’0000’ to ’4000’ -> /dev/null

bit[6:4] : boot error codes - visible at {usb_sws, usb_sdo, usb_sck}

000: boot loader terminated without error

001: no external EEPROM found after 5 retries

010: no external nor internal EEPROM found, no header loaded

011: header loaded but then failed loading section_1

100: header loaded but then failed loading section_2

101: header loaded but then failed loading section_3

110: header loaded but then failed loading section_4

111: persisting SCL_down or skipping the boot loader altogether

bit[3] = 1: (reserved)

bit[2] = 1: hard reset I2C only, reset after 16 clock cycles

bit[1] = 1: hard reset V8 only, reset after 16 clock cycles

bit[0] = 1: swap decoding of rom_ce and emu_ram_ce

v8_emu_reg

b004hex V8 hardware config register (rw)

bit[7] = 1: enable timer by sofo_ll

bit[6] = 1: enable timer by usb_iso_reado

bit[5] = 1: enable timer by usb_iso_writeo

bit4] = 1: enable timer by alt_usb_int (if enabled)

bit[3] = 0: test_bus_gnt waits 1 cycle after VUSB ISO access
1: test_bus_gnt immediately after VUSB ISO access

bit[2] = 1: one_clk (makes clk_sie == clk_cpu)

bit[1] = 1: v8_disable (grants the bus unconditionally to the test interface)

bit[0] = 1: dont generate pstrobe pulses for all HW-addresses (b000...b0ff)

v8_hw_config

Table 10–2: V8 General & Interface Registers

Register
Address

Function Name

APPLICATION NOTE SOFTWARE UAC 357xB

Micronas ...; 6251-xxx-1AS 61

16 Bit Timer

b008hex Timer counter register low (rw) timer_cnt_low

b009hex Timer counter register high (rw) timer_cnt_high

b00ahex Timer CTRL register (rw)

The current count value in the CTR can be read or written at anytime. Care must be
taken when accessing the CTR when RUN is 1. No protection is provided to insure that
the counter won’t count in the time between reading the low and the high halves of the
CTR. Generally, you should read the CTRH, then the CTRL, then reread the CTRH and
compare with the first read of the CTRH. If the values are equal, then value read is cor-
rect. If the values differ, you may want to simply reread the CTR until they do match, or
inspect CTRL and select the first CTRH if CTRL[7]=1 or the second CTRH if
CTRL[7]=0.

bit[7] r = 1: timer interrupt (max reached), w = 1: reset irq bit

bit[6] = 1: enable timer interrupt, = 0: mask interrupt

bit[5] = 1: counting to MAXB, = 0: counting to MAXA

bit[4] = 1: retrigger when cnt=max reached, = 0: stop when cnt=max

bit[3] = 1: enable MAXB, = 0: use only MAXA

bit[2] (reserved), set to zero

bit[1] = 1: use EXT_ENB to enable counter, = 0: internal clock

bit[0] = 1: enable counter, = 0: stop counter (RUN)

timer_ctl

b00bhex Timer prescaler register (rw)

Divide the selected count enable by the value in this register plus one. 0=disable pres-
cale, 1=divide by 2, 2=divide by 3, 255=divide by 256.

timer_presc_reg

b00chex Timer MAXA low register (rw) timer_maxa_low

b00dhex Timer MAXA high register (rw) timer_maxa_hi

b00ehex Timer MAXB low register (rw) timer_maxb_low

b00fhex Timer MAXB high register (rw) timer_maxb_hi

I2C Master/Slave Interface

b010hex I2C control register (rw)

mostly used for setting operation modes and indicating protocol phases

bit[7] = 1: end_of_telegram (marks the last byte of the telgram)

bit[6] (reserved)

bit[5] = 1: repeat_start (generate a repeated START condition)

bit[4] = 1: ignore_ack (never checks acknowledge, just reports bus_errors when no ack
was seen)

bit[3] = 1: enable I2C interrupt

bit[2] = 1: master_enable, set before starting a master telegram, can be released after
writing the I2C address

bit[1] = 1: fast mode, = 0: slow mode

bit[0] = 1: enable power down mode, I2C clock will stop if no transfer is active

i2c_ctl_reg

Table 10–2: V8 General & Interface Registers

Register
Address

Function Name

UAC 357xB APPLICATION NOTE SOFTWARE

62 ...; 6251-xxx-1AS Micronas

b011hex I2C data register (rw)

writing a byte to the Data register turns the I2C interface into master mode and issues a
bus_request if the bus is currently free.

i2c_data_reg

b012hex I2C interrupt status register

interrupt status and device status indication

bit[7] r = 1: loss of arbitration or no response from any device (see bus_active), w = 1:
reset irq bit

bit[6] r =1: we transmitted a read device_ID (maybe we must set "end_of_telegram"
now), w = 1: reset irq bit

bit[5] r = 1: buffer_full (has received a new data byte), w = 1: reset irq bit

bit[4] r = 1: buffer_empty (needs a new data byte to be sent), w = 1: reset irq bit

bit[3] r = 1: bus_error (I2C bus hangs and is unusable), w = 1: reset irq bit

bit[2] (ro) = 1: first data byte received or transmitted

bit[1] (ro) = 1: Interface is active - slave or master

bit[0] (ro) = 1: Interface is in master mode

i2c_int_stat_reg

b013hex I2C device_ID register (left aligned) (rw)

writing a byte to this register sets the device ID of the I2C interface, LSB is ignored

i2c_devid_reg

USB Serial Data Output Interface

b018hex USB DAT Serial Interface (rw)

bit[7:0] Data to be written. serial out MSB first
Interface Control: {polarity, rise_cnt[2:0], fall_cnt[3:0]}

dsi_reg

b019hex USB DAT Serial Interface (rw)

bit[7:0] read: {empty, 3’b0, bit_cnt[3:0]}
write: {polarity, rise_cnt[2:0], fall_cnt[3:0]}

Audio Streaming Interface

b030hex Audio Streaming Interface, test low byte

read next upstream byte - low

write next downstream byte - low (first on USB bus)

audio_test_low

b031hex Audio Streaming Interface, test middle byte

read next upstream byte - mid

write next downstream byte - mid

audio_test_mid

b032hex Audio Streaming Interface, test high byte

read next upstream byte - high

write next downstream byte - high, shift into fifo

audio_test_high

b033hex Audio Streaming Interface, all bytes

this is the data source/sink for the two ISO interfaces, controlled by xfifo_ctl[3:0]

audio_test_all

Table 10–2: V8 General & Interface Registers

Register
Address

Function Name

APPLICATION NOTE SOFTWARE UAC 357xB

Micronas ...; 6251-xxx-1AS 63

b034hex Audio downstream format

bit[2] = 1: 4 channel audio (regardless of bit[1])

bit[1] = 1: stereo, = 0: mono (24 bit mono not supported)

bit[0] = 1: 24 bit resolution, = 0: 16 bit resolution

audio_dwn_fmt

b035hex Audio upstream format

bit[1] = 1: stereo, = 0: mono (8 bit stereo not supported)

bit[0] = 1: 16bit resolution, = 0: 8bit resolution

interface is locked if bit[1:0] = ‘10’

audio_up_fmt

b037hex Audio Interface Status (ro)

bit[7] 0

bit[6] downstream full

bit[5] upstream empty

bit[4:0] reserved

audio_up_fmt

XDFP-CONTROL-INTERFACE

b042hex High-part of XDFP-data (wo)

bit[7:0] DSP reads these bits as bit[17:10] from I2C_DATA_IN

V8W_DHI

b043hex Mid-part of XDFP-data (wo)

bit[7:0] DSP reads these bits as bit[9:2] from I2C_DATA_IN

V8W_DMID

b044hex Low-part of XDFP-data (wo)

bit[7:2] reserved, should be set to zero

bit[1:0] DSP reads these bits as bit[1:0] from I2C_DATA_IN

V8W_DLO

b045hex High-part of XDFP-address & command-control (wo)

bit[5] DSP direct register access
0 : memory
1 : register

bit[3:2] DSP command
00 : write
01 : read
10 : Jump to address in I2C_DATA_IN
11 : reserved, must not be used

bit[1:0] DSP interprets these bits as bit[9:8] of the address

V8W_AHI

b046hex Low-part of XDFP-address (wo)

bit[7:0] DSP interprets these bits as bit[7:0] of the address

V8W_ALO

b05chex XDFP data high (Reset: 0hex)

bit[7:0] data: contains bits[19:10] of the XDFP I2C_DATA_OUT register

V8R_DHI

b05dhex XDFP data high (Reset: 0hex)

bit[7:0] data: contains bits[8:2] of the XDFP I2C_DATA_OUT register

V8R_DMID

b05ehex XDFP data high (Reset: 0hex)

bit[7:0] data: contains bits[1:0] of the XDFP I2C_DATA_OUT register

V8R_DLO

Table 10–2: V8 General & Interface Registers

Register
Address

Function Name

UAC 357xB APPLICATION NOTE SOFTWARE

64 ...; 6251-xxx-1AS Micronas

10.4. USB Serial Engine Interface
(see VUSB Documentation)

MISC REGISTER

b05fhex Power-Modes / DSP Status Register (ro)
Reset: x0000001bin, depending on SEN-Pin

bit[7] suspend enable : state of the “SEN”-pin

bit[6] suspend marker: this bit delivers the state of V8W_APP[6]
0 : normal operation
1 : IC is about to enter,is already in or has just left a suspend mode
triggered by the USB-host.

bit[5] remote wakeup marker:
0 : normal operation
1 : suspend triggered by "external wake-up"

bit[4] usb_sdo: used for selection of the EEPROM dev ID

bit[3] usb_sck: used for selection of fail-safe mode

bit[2] read active: DSP read, XDFP-control-interface-flag
0 : inactive
1 : active

bit[1] write active: DSP write, XDFP-control-interface-flag
0 : inactive
1 : active

bit[0] busy : DSP control interface is busy
0 : inactive
1 : active

V8R_STAT

b06fhex UACB i2c-device-address initialization
bit[7:3] reserved, must be set to zero

bit[2] simple_i2c; pin USBWSO

bit[1] failsave; pin USBDAT

bit[0] i2caddr; pin USBCLK

V8R_ICA

Table 10–2: V8 General & Interface Registers

Register
Address

Function Name

Table 10–3: USB Serial Engine Interface

Register
Address

Function Name

b080hex SIE interrupt status (rw)

read = {2’b0, resume, sleep, tok_dne, sof_tok, error, usb_rst}

writing a ‘1’ resets the respective bit,

writing to this location pops one byte out of hte usb_stat fifo

usb_int_stat

b081hex SIE interrupt enable (rw)

{2’b0, resume, sleep, tok_dne, sof_tok, error, usb_rst}

usb_int_enb

APPLICATION NOTE SOFTWARE UAC 357xB

Micronas ...; 6251-xxx-1AS 65

b082hex SIE error status (rw)

{bts, own, dma, bto, dfn8, crc16, crc5, pid}

writing a ‘1’ resets the respective bit

usb_err_stat

b083hex SIE error enable (rw)

{bts, own, dma, bto, dfn8, crc16, crc5, pid}

usb_err_enb

b084hex SIE status (ro)

{endp[3:0], in, odd, 0, 0}

usb_stat

b085hex SIE control (rw)

{5’b0, resume, odd_rst, usb_en}

usb_ctl

b086hex SIE address (rw)

{1’b0, addr[6:0]}

usb_addr

b087hex SIE BDT page (rw)

for UACB this is a constant ‘a0’

usb_bdt_page

b08chex SIE Micronas control register (rw)

bit7:4] current token (ro)

bit[3:2] setting for usb_pre_bus_lock duration (rw)

00 : early buslock only for ISO IN tokens
01 : very early buslock only for ISO IN tokens (2 cycles earlier than "early")
10 : early buslock for every IN and OUT tokens
11 : very early buslock for all ISO IN and ISO OUT tokens, early buslock for

non-ISO IN and OUT tokens

bit[1] = 1: enable new sync detection circuitry built into DPLL

bit[0] = 1: enable SOF fly wheel

usb_sie_control

b08dhex SIE micronas status register (ro)

bit[4] current endpoint

bit[3] isochronous endpoint

bit[2] own

bit[1] endpoint rx odd

bit[0] endpoint tx odd

usb_sie_status

b08ehex SIE micronas configuration register (rw)

bit7:4] not defined, set to zero

bit[3] = 1: don’t stall after ’BDT status’ - default is ’stall all non-SETUP after status’

bit[2] = 1: stall ’DATA0 status’ - default is dont stall

bit[1] = 1: disable ’bdt_stall’ - default is enable

bit[0] = 1: ’crc16_err_set’ doesn’t break the rx transfer

usb_sie_config

Table 10–3: USB Serial Engine Interface

Register
Address

Function Name

UAC 357xB APPLICATION NOTE SOFTWARE

66 ...; 6251-xxx-1AS Micronas

10.5. General Purpose IO Registers / Test Bus IF

b090hex SIE enpoint 0 control register (rw)

bit[7:6] reserved

bit[5] r = 1: new SETUP for even BDT, w = 1: reset this bit

bit[4] r = 1: new SETUP for odd BDT, w = 1: reset this bit

bit[3] = 1: enable OUT transactions for this endpoint

bit[2] = 1: enable IN transactions for this endpoint

bit[1] = 1: stall this endpoint

bit[0] = 1: enable handshake for this endpoint

usb_ep0_ctl

b09xhex SIE enpoint x (x = 1..7) control register (rw)

bit[7] = 1: disable buffer toggling for this endpoint

bit[6:5] reserved

bit[5] = 1: isochronous EP

bit[3] = 1: enable OUT transactions for this endpoint

bit[2] = 1: enable IN transactions for this endpoint

bit[1] = 1: stall this endpoint

bit[0] = 1: enable handshake for this endpoint

usb_epx_ctl

Table 10–3: USB Serial Engine Interface

Register
Address

Function Name

Table 10–4: General Purpose IO Registers / Test Bus IF

Register
Address

Function Name

b0a0hex test data / GPO[7:0] (rw)

read/write to the output register, to see data at the pins the output direction must be set.

gpo_low

b0a1hex test addr_low / { GPO[11:8] , GPI[11:8] } (rw)

read from the GPIO pins / write to the output register, to see data at the pins the output
direction must be set.

gpio_hi

b0a2hex test addr_high / GPI[7:0] (ro)

read the data at the GPIO pins

gpi_low

b0a3hex test interrupt done (wo)

writing to this location releases trdy, thus indicating that the test interrupt has been com-
pletely serviced by the V8.

test_int_dne

b0b0hex
.
.
b0bfhex

GPIO parallel bus interface, access to GPIO address / data lines

writes/reads directly to/from GPIO {paddr[3:0], pdata[7:0]}, see ’gpb_strobe’ and
’gpb_rwq’ (uses the same resources as the test interface so, again: be careful not to inter-
fere with testmode)

APPLICATION NOTE SOFTWARE UAC 357xB

Micronas ...; 6251-xxx-1AS 67

10.6. Application specific registers
The following Table shows write only hardware register of the UAC357xB. Register shadows are kept in the V8 RAM and are
cyclically written to the hardware register by the processor.

Table 10–5: V8 Write Only Registers

Register
Address

Function Name

SOFTRESETS

b04ehex Software-Reset (Reset: 0)

bit[7:2] reserved, should be set to zero

bit[1] dfpres : DSP reset
0 : normal mode
1 : permanent reset

bit[0] por : Processor reset
0 : normal mode
1 : reset of DSP and V8

V8W_SOFTRES

MAIN CONTROL

b04fhex Application (Reset: 10hex)
Shadow: V8_APP_REG_SHADOW= a180hex
This register is not updated by the processor
bit[7] i2sxt :source select of USB streaming interface

0 : V8 uses USB-I2S-Interface (usbwso/usbclk)
1 : DSP I2S-output-interface (usbwso/usbclk)

bit[6] spden :SusPenDENable,
0 : normal state
1 : enables the suspend mode logic

Note: If this bit is set, the suspend mode is entered when the synthe-
sis-part activates its “suspd“-wire
The bit can be reread as bit[6] of the status register V8RSTAT.
The bit is not resetted during suspend.

bit[5] resxwu :reset external-wakup-flag (=bit[5] of V8W_STAT)
0 : normal state
1 : reset

Note: A LOW-state at the UACB-pin SEN sets an internal flip-flop,
meaning an “external wakup request“.This flip-flop can be resetted
by setting the “resxwu“-bit. The bit is not resetted during suspend.

bit[4:3] xdfreq : set XDFP frequency (version 0201 and higher)
00 : 72MHz
01 : 48MHz
10 : 36MHz (default after reset)
11 : 24MHz

bit[2] sofbyp : SOF bypass
0 : SOF from synthesis
1 : SOF comes from SOF-Pad

bit[1:0] mclksel : freq of pin "mclk"
00 : 18 MHz
01 : 24 MHz
10 : 36 MHz
11 : 48 kHz-IRQ (debug & test)

V8W_APP

UAC 357xB APPLICATION NOTE SOFTWARE

68 ...; 6251-xxx-1AS Micronas

b05bhex Analog Control (Reset: c0hex)
Shadow: V8_ANCTR_SHADOW= a181hex

bit[7] outlron :
0 : disable headphone opamp
1 : enable headphone opamp, force sref to on state (default)

bit[6] srefon :
0 : sref off
1 : sref on (default)

bit[5] filton :
0 : disable filter opamp
1 : enable filter opamp

bit[4] reserved, must be set to zero

bit[3] Internal reset enable

bit[2] Pseudo differential output mode

bit[1] Common output mode

bit[0] setagn : set voltage of sref
0 : 1.725V
1 : 2.3V

V8W_ANCTR

I/O-PIN CONTROL

b050hex I/O-Control (Reset: 0)
Shadow: V8W_IO_SHADOW= a18ahex

0 : input/tristate
1 : output

bit[7] strbdrv :pin "strb"

bit[6] rddrv :pin "rd"

bit[5] usbddrv :pin "usbdat"

bit[4] usbcldrv :pin "usbclk"

bit[3] vbusdrv :pin "vbus"

bit[2] clidrv :pin "cli"

bit[1] wsidrv :pin "wsi"

bit[0] daidrv :pin "dai"

V8W_IO

Table 10–5: V8 Write Only Registers

Register
Address

Function Name

APPLICATION NOTE SOFTWARE UAC 357xB

Micronas ...; 6251-xxx-1AS 69

b057hex I/O-Control2 (Reset: 0fhex)
Shadow: V8W_IO2_SHADOW= a18bhex

0: input/tristate
1: output

bit[7] mclkdrv :pin "mclk"

bit[6] daodrv :pin "dao"

bit[5] usbwsdrv :pin "usbws"

bit[4] sendrv :pin "sen"

bit[3] vbuspd: enables PULLDOWN of pin VBUS
0 : pulldown disabled
1 : pulldown enabled (default)

bit[2] trdydrv :pin "trdy"

bit[1] sofdrv :pin "sof"

bit[0] suspdrv :pin "suspend"

Note: this register is only reset by the RESQ-pin (NOT during suspend mode)

V8W_IO2

b058hex GPIO-Control (Reset: 0)
Shadow: GPIO_CONFIG_HI_SHADOW= a185hex

bit[7:4] not used

bit[4:0] gpiohidrv : configure direction of gpio[11:8]-pins
0 : input / tristate
1 : output

V8W_PIO2

b051hex GPIO-Control (Reset: 0)
Shadow: GPIO_CONFIG_LO_SHADOW= a184hex

bit[7:0] gpiodrv : configure direction of gpio[7:0]-pins
0 : input / tristate
1 : output

V8W_PIO

b055hex GPIO[7:0]-Driver strength (Reset: 0)
Shadow: GPIO_PADSTRENGTH_LO_SHADOW= a188hex

bit[7:0] gpio : set pad driver strength of gpio[7:0]-pins
0 : weak
1 : strong

V8W_PS

b056hex DriverStrength (Reset: 0)
Shadow: GPIO_PADSTRENGTH_HI_SHADOW= a189hex

pad-strength of gpio[11:8] and other pins
0 : weak
1 : strong

bit[7] i2ss : driver strengths of the pins dao,dai,wsi,cli

bit[6] usbs : driver strengths of the pins usbwso,usbclk,usbdat

bit[5] sofs : driver strengths of the pins sof,sen,suspendq,trdyI

bit[4] strbs : driver strengths of the pins strb,rd

bit[3:0] gpiohi : driver strengths of the gpio[11:8]

V8W_PS2

Table 10–5: V8 Write Only Registers

Register
Address

Function Name

UAC 357xB APPLICATION NOTE SOFTWARE

70 ...; 6251-xxx-1AS Micronas

b059hex Pulldown-Control (Reset: ffhex)
Shadow: GPIO_PULLDOWN_LO_SHADOW= a186hex

bit[7:0] gpiolo : configure pulldowns of gpio[7:0]-pins
0 : no pulldown
1 : pulldown

V8W_PDEN

b05ahex Pulldown-Control of GPIO[11:8] and other pins (Reset: ffhex)
Shadow: GPIO_PULLDOWN_HI_SHADOW= a187he

bit[7] mclk : enable/disable pulldown of pin mclk

bit[6] dao : enable/disable pulldown of pin dao

bit[5] usbif : enable/disable pulldown of usb serial interface
(pins usbdat, usbws and usbclk)

bit[4] pif : enable/disable pulldown of parallel interface
(pins strb and rd)

bit[3:0] gpiohi : enable/disable pulldown of gpio[11:8]

Note: this register is only resetted by RESQ-pin (NOT during suspend!)

V8W_PDEN2

b052hex Analog volume delay adjust (Reset: 35dez)

This register sets the time, after which the analog DAC-volume values, which are
written by the XDFP, are applied to the DAC volume circuitry.
bit[7:0] avdly : analog-delay-adjustion, reset = 35 (2.9us)

Unit: 12MHz-steps = 83.3 ns
Example: a value of avdly=20 delays the volume by 20*83.3ns= 1666ns= 1.6us

V8W_AVDLY

Table 10–5: V8 Write Only Registers

Register
Address

Function Name

APPLICATION NOTE SOFTWARE UAC 357xB

Micronas ...; 6251-xxx-1AS 71

b078hex Voltage regulators (Reset: 00hex)

Properties of digital voltage regulator(s)

bit[7] bv5v : analog-PA
0 : 3.5V
1 : voltage regulator bridged (analog at 5V=extern voltage)

bit[6] unused (0101- 0201: av5v : analog-part 0..3.5V 1..bridged)

bit[5] v85v : V8 voltage regulator
0 : 3.75V
1 : v8-voltage regulator bridged (v8 at 5V=extern voltage)

bit[4] v8poff : v8-voltage regulator
0 : enable
1 : disable

bit[3] x5v : DSP voltage regulator
0 : 3.75V
1 : voltage regulator bridged (DSP at 5V=extern voltage)

bit[2] xpoff : DSP voltage regulator
0 : enable
1 : disable (DSP at 0V)

bit[1:0] voltage : DSP/V8-voltage
00 : 3.75V
01 : 3.5V
10 : 3.3V
11 : 3V

V8W_VOLTREG

Table 10–5: V8 Write Only Registers

Register
Address

Function Name

UAC 357xB APPLICATION NOTE SOFTWARE

72 ...; 6251-xxx-1AS Micronas

10.7. DSP EMU-control registers

Table 10–6: V8 DSP-EMU Write Registers

Register
Address

Function Name

DSP-EMU CONTROL REGISTERS

b073hex EMU-RAM data high (Reset: 0)

use this register to fill the (external) XDFP-emu-ram
bit[7:0] data : xdfp opcode [23:16]

V8W_EDHI

b074hex EMU-RAM data middle(Reset: 0)

use this register to fill the (external) XDFP-emu-ram
bit[7:0] data : xdfp opcode [15:8]

V8W_EDMD

b075hex EMU-RAM data low(Reset: 0)

use this register to fill the (external) XDFP-emu-ram
bit[7:0] data : xdfp opcode [7:0]

V8W_EDLO

b076hex EMU-RAM configuration / EMU-RAM address high-byte (Reset: 10hex)

use this register to define the address of the (external) XDFP-emu-ram that should be
filled with the data in {V8W_EDHI,V8W_EDMID,V8W_EDLO} and to configure
the emu-interface
bit[7:7] rd; //0.. "normal" EMU mode 1..read back the external ram
 //activates the data line drivers!
 bit[6:6] emuon; //1..XDFP uses ext. EMU-ram 0..XDFP uses its internal rom
 bit[5:5] eadrv; //1..adress-lines to external RAM are driven
 // 0..adress-lines are tristate
 bit[4:4] clkdrv; //1..dfp-clock driven to Pin EMUCLK
 //0..Pin EMUCLK is tristate
bit[3:0] adrhi : emu-ram address[11:8]

V8W_EAHI

b077hex EMU-RAM address low-byte (Reset: 0)

use this register to define the address of the (external) XDFP-emu-ram that should be
filled with the data in {V8W_EDHI,V8W_EDMID,V8W_EDLO}
bit[7:0] adrlo : emu-ram address[7:0]

V8W_EALO

Table 10–7: V8 DSP-EMU Read/Write Registers

Register
Address

Function Name

DSP EMU CONTROL REGISTERS

b06chex Read back XDFP emu-data, high-byte

bit[7:0]data: contains bit[23:16] of the selected emu-ram address

V8R_EDHI

b06dhex Read back XDFP emu-data, mid-byte

bit[7:0]data: contains bit[15:8] of the selected emu-ram address

V8R_EDMDI

b06ehex Read back XDFP emu-data, low-byte

bit[7:0]data: contains bit[7:0] of the selected emu-ram address

V8R_EDLO

APPLICATION NOTE SOFTWARE UAC 357xB

Micronas ...; 6251-xxx-1AS 73

UAC 357xB APPLICATION NOTE SOFTWARE

74 ...; 6251-xxx-1AS Micronas

APPLICATION NOTE SOFTWARE UAC 357xB

Micronas ...; 6251-xxx-1AS 75

11. Glossary

lower ROM: 8k Program ROM form 0000 to 1FFF. Can be
shadowed by 8k EMU-ROM

BDT - Buffer Descriptor Table

bootloader: routine in upper rom – handles firmware-startup
and code&data download from external EEPROM.

Descriptor:Contains all information of the USB-characteris-
tic. Transferrred to host during enumeration.

FU - Feature Unit

IT – Input Terminal

MU – Mixer Unit

OT – Output Terminal

Section1:256bytes data area. Contains default settings for
hardware and audio processing and programmable descrip-
tor components.

Shadow RAM:8k – internal RAM. Shadows the lower
ROM. Used for downloading new firmware or emulating
firmware before generating a progam ROM.

SU - Selector Unit

upper ROM:4k – Program ROM from 2000 to 2FFF. Can
NOT be shadowed

V8 – name of the internal microcontroller

XDFP – name of the internal DSP – core

Micronas GmbH
Hans-Bunte-Strasse 19
D-79108 Freiburg (Germany)
P.O. Box 840
D-79008 Freiburg (Germany)
Tel. +49-761-517-0
Fax +49-761-517-2174
E-mail: docservice@micronas.com
Internet: www.micronas.com

Printed in Germany
Order No. 6251-5XX-XAS

All information and data contained in this document are without any commit-
ment, are not to be considered as an offer for conclusion of a contract, nor shall
they be construed as to create any liability. Any new issue of this data sheet
invalidates previous issues. Product availability and delivery are exclusively
subject to our respective order confirmation form; the same applies to orders
based on development samples delivered. By this publication, Micronas GmbH
does not assume responsibility for patent infringements or other rights of third
parties which may result from its use.
Further, Micronas GmbH reserves the right to revise this publication and to
make changes to its content, at any time, without obligation to notify any per-
son or entity of such revisions or changes.
No part of this publication may be reproduced, photocopied, stored on a
retrieval system, or transmitted without the express written consent of Micro-
nas GmbH.

UAC 357xB APPLICATION NOTE SOFTWARE

76 ...; 6251-xxx-1AS Micronas

12. Application Note History

1. Application Note Software: “UAC 357xB Programmer’s
Guide”, ..., 6251-5XX-XAS. First release of the applica-
tion note software.

mailto:docservice@micronas.com
http://www.micronas.com

